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Spinor Products
and Lorentz Symmetry

Randy S

Abstract The Dirac equation is an equation of motion for a free
spinor field. Article 21794 shows that the Dirac equation has sym-
metries corresponding to every spacetime isometry in the identity
component of the Lorentz group. This article constructs two-spinor
products that are invariant under those symmetry transformations,
generalized to an arbitrary number of dimensions of spacetime and
arbitrary signature. Some other properties of these two-spinor prod-
ucts are also explored.
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1 Introduction

The Clifford algebra1 Cliff(p,m) is an associative algebra generated by mutually
anticommuting vectors e1, e2, ..., ep+m, each satisfying e2

a = ±1, with p plus signs
and m minus signs. The pair of integers (p,m) will be called the signature. A
boldface letter like v will denote a linear combination of the eas with real coefficients
and will be called a spacetime vector, even though this article considers arbitrary
signatures, not just lorentzian signatures.2

Let γ denote an irreducible representation of Cliff(p,m) on a complex vector
space W . The matrix representing any A ∈ Cliff(p,m) will be denoted γ(A), and
the abbreviation γa ≡ γ(ea) will be used for the matrix representing a basis vector
ea. Each γa is called a Dirac matrix, and an element ψ ∈ W of the complex
vector space on which these matrices act is called a Dirac spinor.3

The Dirac equation is an equation of motion for a free spinor field ψ(x).
Article 21794 showed that the Dirac equation in flat spacetime has symmetries
corresponding to every Lorentz transformation that may be expressed as a com-
position of two reflections. Those symmetry transformations constitute the spin
group.4 Each of these transformations has the form

ψ(x)→ γ(r1)γ(r2)ψ(x̄), (1)

where the isometry x→ x̄ is composed of reflections along the two spacetime direc-
tions r1 and r2. In quantum field theory (QFT), the equations of motion are only
part of a given model’s structure, so symmetries of the Dirac equation may or may
not be symmetries of the full quantum model. This article focuses on the identity
component of the spin group – the part of the spin group that is continuously

1Article 03910 introduces Clifford algebra.
2Article 21794 focused on lorentzian signatures (either p = 1 or m = 1).
3In quantum field theory, the components of a spinor field are operators on a Hilbert space, and they don’t

commute with each other. The manipulations in this article don’t use the commutation relations, though, so here
the components of a spinor may be viewed as ordinary complex numbers.

4Article 08264
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connected to the identity transformation5 – because the transformations in that
subgroup are always symmetries of the full quantum model of a free Dirac spinor
field in flat spacetime.

Instead of considering spinor fields, this article considers only spinors – individ-
ual elements ofW , not parameterized by the spacetime coordinates x. Motivated by
the context reviewed in the previous paragraph, this article constructs two-spinor
products that are invariant under transformations of the form

ψ → γ(r1)γ(r2)ψ for all ψ ∈ W, (2)

where r1 and r2 are spacetime vectors with r2
1 = r2

2 ∈ {1,−1} so that the transfor-
mation belongs to the identity component of the spin group.6 This article writes
〈ψ, φ〉 for a product of two spinors ψ and φ with particular properties.7 The key
property is8

〈Bψ, Bφ〉 = 〈ψ, φ〉 for all ψ, φ ∈ W, (3)

for all B = γ(r1)γ(r2) with r2
1 = r2

2 ∈ {1,−1}. The two-spinor product is also
required to be either bilinear, which means

〈zψ, φ〉 = z〈ψ, φ〉 and 〈ψ, zφ〉 = z〈ψ, φ〉 for all complex numbers z,

or sesquilinear, which (in this article) means

〈zψ, φ〉 = z∗〈ψ, φ〉 and 〈ψ, zφ〉 = z〈ψ, φ〉 for all complex numbers z,

where z∗ is the complex conjugate of z.
5Sometimes the name spin group refers only to the identity component, as in Varadarajan (2004), section 5.4,

page 193.
6The full spin group (as defined in article 08264) includes transformations for which r21 and r22 have opposite signs,

but those transformations are not continuously connected to the identity transformation.
7The notation ψφ is more common in the physics literature, but the notation 〈ψ, φ〉 has advantages when studying

transformations. This use of angle-brackets should not be confused with the use of angle-brackets to denote the inner
product of two state-vectors in quantum theory. Spinors are not state-vectors, at least not the way they’re normally
used in QFT. In QFT, each component of a spinor field is an operator that acts on state-vectors.

8This property is equivalent to 〈Bψ, φ〉 = 〈ψ, Brevφ〉, where Brev = γ(r2)γ(r1). This is proposition 4.1 in Deligne
(1999) and lemma 6.5.1 in Varadarajan (2004), with the understanding that those authors define the spin group to
be only the identity component of what article 08264 calls the spin group.
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2 A sufficient condition

If the product 〈ψ, φ〉 satisfies

〈γaψ, φ〉 = σ〈ψ, γaφ〉 for all a (4)

with σ ∈ {1,−1}, then it automatically has the property (3): it is automatically
invariant under the identity component of the spin group. To prove this, use〈

γ(r1)γ(r2)ψ, φ
〉

= σ
〈
γ(r2)ψ, γ(r1)φ

〉
= σ2

〈
ψ, γ(r2)γ(r1)φ

〉
=
〈
ψ, γ(r2)γ(r1)φ

〉
. (5)

Now set
φ = γ(r1)γ(r2)φ

′

on both sides of (5) and use r2
1 = r2

2 ∈ {1,−1} to get〈
γ(r1)γ(r2)ψ, γ(r1)γ(r2)φ

′〉 =
〈
ψ, γ(r2r1r1r2)φ

′〉 = 〈ψ, φ′〉. (6)

This shows that (4) implies (3).
The requirement for 〈ψ, φ〉 to be either bilinear or sesquilinear will be enforced

by setting

〈ψ, φ〉 =

{
ψTMφ if bilinear,

ψ†Mφ if sesquilinear.
(7)

The right-hand sides are written using matrix notation: M is a square matrix, each
spinor ψ, φ is a matrix with one column, ψT is the transpose of ψ, and ψ† is the
hermitian conjugate of ψ (the complex conjugate of ψT ).

Given (7), the challenge is to find a matrix M that solves the constraint (4). The
solution depends on the signature (p,m), on the sign σ, and on whether the bilinear
or sesquilinear option is imposed. The first goal in this article is to determine when
solutions exist. In cases where they do exist, solutions will be constructed, and
their properties will be explored.

5
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3 Non-existence of solutions in some cases

When p+m is even, a matrix M for which (7) satisfies (4) always exists. That will
be demonstrated later. This section shows that such a matrix M doesn’t always
exist when p+m is odd.

Suppose that (4) holds with the same sign σ for all γa and all ψ, φ, but don’t
assume anything else about 〈ψ, φ〉 yet. When d ≡ p + m is odd, an irreducible
matrix representation has the property that each Dirac matrix is proportional to
the product of all of the others,9 so we can write

γd = εγ1γ2 · · · γd−1 (8)

with10

ε ≡

{
±1 if d = 4n+ 1 and p is odd, or if d = 4n+ 3 and m is odd,

±i if d = 4n+ 1 and m is odd, or if d = 4n+ 3 and p is odd,
(9)

where n is any nonnegative integer. Reversing the order of the factors in the
product (8) may or may not change the overall sign, depending on the value of d:

γd−1 · · · γ2γ1 =

{
γ1γ2 · · · γd−1 if d = 4n+ 1,

−γ1γ2 · · · γd−1 if d = 4n+ 3.
(10)

Now calculate

〈γdψ, φ〉 = 〈εγ1γ2 · · · γd−1ψ, φ〉 (equation (8))

= σd−1〈εψ, γd−1 · · · γ2γ1φ〉 (equation (4))

= 〈εψ, γd−1 · · · γ2γ1φ〉 (d is odd, so σd−1 = 1)

=

{
〈εψ, ε−1γdφ〉 if d = 4n+ 1

−〈εψ, ε−1γdφ〉 if d = 4n+ 3.
(equations (8) and (10)) (11)

9Article 86175
10Article 87696
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To continue, consider the bilinear and sesquilinear options separately. If 〈ψ, φ〉 is
bilinear, then the factors ε and ε−1 on the last line of (11) cancel each other, leaving

〈γdψ, φ〉 =

{
〈ψ, γdφ〉 if d = 4n+ 1

−〈ψ, γdφ〉 if d = 4n+ 3
if bilinear. (12)

If 〈ψ, φ〉 is sesquilinear, then

〈γdψ, φ〉 =

{
ε2〈ψ, γdφ〉 if d = 4n+ 1

−ε2〈ψ, γdφ〉 if d = 4n+ 3,
if sesquilinear,

and then using (9) to evaluate ε2 gives

〈γdψ, φ〉 =

{
〈ψ, γdφ〉 if p is odd

−〈ψ, γdφ〉 if m is odd
if sesquilinear. (13)

We derived these results using the condition (4) for a 6= d, but the condition (4)
is supposed to hold for all a, including a = d. Compare that requirement to the
results (12) and (13) to deduce that a matrix M satisfying (4) and (7) does not
exist for any of these four combinations:11,12

• bilinear, d = 4n+ 1, σ = −1,

• bilinear, d = 4n+ 3, σ = 1,

• sesquilinear, p odd and m even, σ = −1,

• sesquilinear, p even and m odd, σ = 1.

11This agrees with Hamilton (2017), tables 6.7 and 6.8.
12This implies that no solution (neither bilinear nor sesquilinear) exists for σ = −1 when d = 4n + 1 and p is

odd, and it also implies that no solution exists for σ = 1 when d = 4n + 3 and p is even. At first, this might seem
to contradict theorem 13.17 in Harvey (1990), which asserts the existence of products 〈ψ, φ〉 for both signs σ for
arbitrary (p,m). This apparent contradiction is resolved by the fact that in that theorem, ψ and φ are elements of
what that author calls the space of pinors, which is not always the same as the space of Dirac spinors – even though
much of the literature uses the name pinor for what I’m calling a Dirac spinor.

7
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4 Summary of existence results

First consider the bilinear case. Then a two-spinor product of the form (7) will
satisfy the condition (4) if the matrix M satisfies

γTaM = σMγa

with the same sign σ for all a. Article 87696 shows that in an irreducible represen-
tation of Cliff(p,m), the (non)existence of such a matrix M depends on the value
of d ≡ p+m as shown here:

p+m σ exists?
4n +1 yes
4n+ 1 +1 yes
4n+ 2 +1 yes
4n+ 3 +1 no

p+m σ exists?
4n −1 yes
4n+ 1 −1 no
4n+ 2 −1 yes
4n+ 3 −1 yes

Now consider the sesquilinear case. Then a two-spinor product of the form (7) will
satisfy the condition (4) if the matrix M satisfies

γ†aM = σMγa

with the same sign σ for all a. Article 87696 shows that in an irreducible represen-
tation of Cliff(p,m), the (non)existence of such a matrix M depends on the values
of p and m as shown here:

p+m m σ exists?
even even +1 yes
even odd +1 yes
odd even +1 yes
odd odd +1 no

p+m m σ exists?
even even −1 yes
even odd −1 yes
odd even −1 no
odd odd −1 yes

In these four tables, the cases marked “no” are precisely the cases that were ruled
out in section 3. In all other cases, a matrix M with the required property does
exist. Article 87696 uses a irreducible representation with standard properties (each
Dirac matrix is either symmetric or antisymmetric and is also either hermitian or
antihermitian) to construct them explicitly.

8
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5 Building a vector from spinors

For spinors in an irreducible representation of Cliff(p,m), the analysis in sections
2-4 showed that bilinear and sesquilinear two-spinor products 〈ψ, φ〉 both exist
with the property13

〈Bψ, Bφ〉 = 〈ψ, φ〉 for all ψ, φ (14)

whenever
B = γ(r1)γ(r2) r2

1 = r2
2 ∈ {1,−1}. (15)

For any two-spinor product 〈·, ·〉 with this property, the quantity

〈ψ, γ(v)φ〉

is affected by the transformation

ψ, φ→ Bψ,Bφ (16)

in a way that matches how the vector v would be affected by the same composition
of reflections, namely v→ r2r1vr1r2. To demonstrate this, use the identities

B−1 = γ(r2)γ(r1) (17)

and
B−1γ(v)B = γ(r2r1vr1r2) (18)

to get 〈
ψ, γ(v)φ

〉
→
〈
Bψ, γ(v)Bφ

〉
(using (16))

=
〈
Bψ, BB−1γ(v)Bφ

〉
(using (15) and (17))

=
〈
ψ, B−1γ(v)Bφ

〉
(using (14))

=
〈
ψ, γ(r2r1vr1r2)φ

〉
. (using (18))

13This works because the condition (4) is always satisfied for at least one sign σ and because the sign σ cancels
when an even number of reflections is involved.

9
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6 Reflections

Section 1 reviewed the motivation for considering transformations of the form (16)
with B given by (15): those transformations correspond to symmetries of the Dirac
equation. When d ≡ p + m is even, the Dirac equation also has symmetries of
the form14 ψ(x) → γ(r)ωψ(x̄) corresponding to an individual reflection along the
direction r, where ω denotes the product of all Dirac matrices. With that motive,
this section determines how a transformation of the form

ψ, φ→Mψ, Mφ

affects the quantity
〈ψ, γ(v)φ〉

when M ∝ γ(r)ω. The question is whether that effect matches the reflection15

v→ −rvr

r2
. (19)

The Dirac equation doesn’t have any linear symmetries of the form ψ(x)→Mψ(x̄)
corresponding to individual reflections when d is odd,14 so this section only considers
even values of d.

Define ω to be the product of all Dirac matrices in some given order, and let
ωrev denote the product of all Dirac matrices in the reverse order. Equation (4)
implies

〈ωψ, φ〉 = 〈ψ, ωrevφ〉.
The signs σ cancel because d is even. Let

M = ε′(r)γ(r)ω

for some complex number ε′(r) that may depend on r. (The matrix M also depends
on r, of course, but this dependence will be left implicit to streamline the equations.)

14Article 21794
15Article 08264
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Then 〈
Mψ, γ(v)Mφ

〉
=
〈
ε′(r)ψ, ωrevγ(r)γ(v)Mφ

〉
=
〈
ε′(r)ψ, ε′(r)ωrevγ(rvr)ωφ

〉
= −

〈
ε′(r)ψ, ε′(r)γ(rvr)ωrevωφ

〉
= −(−1)m

〈
ε′(r)ψ, ε′(r)γ(rvr)φ

〉
. (20)

The third step uses the fact that ω anticommutes with every Dirac matrix when d
is even, and the m on the last line is the number of basis vectors whose square is
negative (section 1).

When 〈·, ·〉 is bilinear, the relationship (20) becomes〈
Mψ, γ(v)Mφ

〉
= −(−1)m

(
ε′(r)

)2〈
ψ, γ(rvr)φ

〉
.

To match (19), we must choose the complex coefficient ε′(r) so that

(−1)m
(
ε′(r)

)2
=

1

r2
.

This is clearly always possible.
When 〈·, ·〉 is sesquilinear, the relationship (20) becomes〈

Mψ, γ(v)Mφ
〉

= −(−1)m
∣∣ε′(r)

∣∣2〈ψ, γ(rvr)φ
〉
.

To match (19), we would need

(−1)m
∣∣ε′(r)

∣∣2 =
1

r2
,

but now we don’t have the ability to enforce this because the quantity
∣∣ε′(r)

∣∣2 is
positive. The effect (19) will be matched only if r2 = (−1)m. This is a condition on
r, so it works for some reflections, but not for all reflections.16 When the signature
is lorentzian, the premise that d is even implies that m is odd, so in that case this
works if and only if r2 = −1.

16Here, we are only considering linear symmetries. In quantum field theory, we can also consider antilinear
symmetries. Article 21794 shows that an antilinear reflection symmetry may exist even a linear reflection symmetry
(with the reflection along the same direction) doesn’t.

11
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7 Chiral spinors

When d ≡ p + m is even, each Dirac spinor ψ consists of two chiral spinors ψL
and ψR that are not mixed with each other by transformations in the spin group.
Some of the combinations

〈ψL, φL〉 〈ψL, γaφL〉
〈ψL, φR〉 〈ψL, γaφR〉
〈ψR, φL〉 〈ψR, γaφL〉
〈ψR, φR〉 〈ψR, γaφR〉

are zero, depending on (p,m) and on whether 〈·, ·〉 is bilinear or sesquilinear. This
section determines which ones are zero.

Suppose that d is even. As in section 6, define ω to be the product of all Dirac
matrices in some given order, and define17

Γ ≡ εω ε ≡

{
1 if p−m = 4k

i if p−m = 4k + 2

so that Γ2 = I, where I is the identity matrix, which implies that the matrices

P± ≡
1± Γ

2

are mutually orthogonal projections.18 Define the chiral spinors19

ψL ≡ P+ψ ψR ≡ P−ψ.

The identity P+ + P− = I gives ψ = ψL + ψR. The fact that Γ anticommutes with
every Dirac matrix (when d is even) implies that the chiral spinors P±ψ are not
mixed with each other by transformations ψ → Bψ with B given by (15).

17The nonnegative integers p and m are defined as in section 1, and k is an arbitrary integer (positive or negative).
18This is also true when d is odd, but then one of them is I and the other is zero.
19Here, each chiral spinor is treated as a Dirac spinor (element of W ) restricted to one of the two subspaces P±W .

12
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When 〈·, ·〉 is bilinear,

〈Γψ, φ〉 = 〈ψ, Γrevφ〉 =

{
〈ψ, Γφ〉 if d = 4n,

−〈ψ, Γφ〉 if d = 4n+ 2.

Combine this with P+P− = P−P+ = 0 to infer

〈ψL, φR〉 = 〈ψR, φL〉 = 〈ψL, γaφL〉 = 〈ψR, γaφR〉 = 0 when d = 4n

〈ψL, φL〉 = 〈ψR, φR〉 = 〈ψL, γaφR〉 = 〈ψR, γaφL〉 = 0 when d = 4n+ 2

when 〈·, ·〉 is bilinear.
When 〈·, ·〉 is sesquilinear,

〈Γψ, φ〉 = 〈ψ, ε∗ωrevφ〉 = (−1)(p−m)/2(−1)(p+m)/2〈ψ, Γφ〉 = (−1)m〈ψ, Γφ〉.

The signs in the third expression come from the relationships ε∗ = (−1)(p−m)/2ε
and ωrev = (−1)(p+m)/2ω. Use this to infer

〈ψL, φR〉 = 〈ψR, φL〉 = 〈ψL, γaφL〉 = 〈ψR, γaφR〉 = 0 when m is even

〈ψL, φL〉 = 〈ψR, φR〉 = 〈ψL, γaφR〉 = 〈ψR, γaφL〉 = 0 when m is odd

when 〈·, ·〉 is sesquilinear. When the signature is lorentzian, the premise that d is
even implies that m is odd, so the last line is the relevant one for most applications
in QFT.

13
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