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The Entropy of an Ideal Gas
Randy S

Abstract This article explains how to deduce the
entropy of an ideal gas as a function of the total energy
E and the total volume V .
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1 The result

As in article 66313, Let Ω(E, V ) be the number of mutually orthogonal states
whose total energy is ≤ E and total volume is ≤ V . For an ideal gas, the function
Ω(E, V ) is

Ω(E, V ) ∝ ωN

N !
with ω =

(
mE

~2

)D/2
V, (1)

where N is the number of molecules,1 D is the number of dimensions of space, m
is the mass of one molecule, ~ is Planck’s constant, and the proportionality factor
is dimensionless. Planck’s constant enters because the state-counting is ultimately
based on quantum physics. The entropy is defined by2

S(E, V ) = k log Ω(E, V )

where k is Boltzmann’s constant

k ≈ 1.38× 10−23 J/K. (2)

The definition of entropy includes Boltzmann’s constant for historical reasons.
Equation (1) says that the entropy of an ideal gas is3

S(E, V ) = constant + kN

(
D

2
logE + log V

)
, (3)

with a constant term that depends on N,m, ~.
This article explains how to derive the result (1).

1 We could consider a system in which N can vary, but N will be treated as a constant in this article.
2 I’m using the notation “log” for the natural logarithm.
3 This is the Sackur-Tetrode equation, with “constant” as a placeholder for terms that depend only on N and

not on E or V .
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2 A quick “derivation”

An ideal gas is one whose molecules have no internal structure (no rotational or
vibrational modes). This is a simplified model of a real gas. This section uses a
quick scaling argument to deduce equation (1). The following sections present a
more careful derivation.

Here’s the quick scaling argument:

• First, we expect intuitively that the number of possible locations of a single
particle is proportional to the volume V , so we expect the number of states
of N particles to scale with V like V N .

• Second, the quantity Ω(E, V ) should be independent of the units we use to
express energy and volume. We can form a units-independent combination
with the help of two constant quantities: the mass m of one molecule, and
Planck’s constant ~. (Planck’s constant is involved because a proper deriva-
tion uses quantum physics to count the number of orthogonal states.) With
these quantities, we can form the combination ω = (mE/~2)D/2V . This is
the unique units-independent combination that is proportional to V .

Combining these two scaling arguments leads to the conclusion that the number of
states must scale with ω like ωN , as shown in equation (1).
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3 The key input from quantum physics

Our current understanding of matter is based on quantum physics. A proper in-
troduction to quantum physics would be too much for this article, but we will need
one basic concept: some observables are not compatible with each other, meaning
that they cannot both be perfectly measured, at least not at the same time. Maybe
we shouldn’t be too surprised by this, because measurement is a physical process,
and we have no good reason to believe that the processes needed for measuring
different observables should be perfectly compatible each other. Surprising or not,
the existence of mutually incompatibility observables is a fundamental feature of
quantum physics.

For the purposes of this article, the most important example is the incompat-
ibility of the observables corresponding to measurements of object’s location and
momentum along the same direction in space. Those observables can both be mea-
sured at the same time, but not with arbitrary precision. Their precision is limited
by the inequality4

∆x∆p & ~ (4)

where ∆x and ∆p are the resolutions of the location- and position-measurements,
respectively (along the given direction in space), and ~ is Planck’s constant. This
inequality is a special example of an uncertainty principle.5 The measurements
we normally work with are much coarser than this, so they are consistent with this
inequality by a very large margin.6

The next section explains how we can use this key input from quantum physics
to derive the result (1).

4 I’m writing the inequality loosely, using &, because I haven’t defined things carefully enough for the exact
coefficient to be meaningful.

5 This name is not a good description of what the principle actually says. Names are just names, often relics from
a point in history before our understanding of the physics was mature. Don’t take them too seriously.

6 For a vivid example of this, see https://physics.stackexchange.com/questions/440399
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4 Derivation for N = 1

First consider a single particle (N = 1). In the simplest nonrelativistic model
of a single quantum particle, we can partition the spectra of the location- and
momentum-observables into cells of size ∆x and ∆p, respectively, along each of
D perpendicular directions in D-dimensional space. As long as we choose these
cell-sizes to satisfy (4), the theory allows a state to be limited to just one of these
cells.7

A state limited to one such cell is orthogonal to a state limited to another such
cell, which means that these two states can be distinguished from each other with
certainty in a single measurement event for a suitably chosen observable. Other
states can be constructed using quantum theory’s superposition principle, but
we don’t need those other states here because they are not orthogonal to the ones
we’re already counting. Statistical mechanics is based on counting the maximum
number of mutually orthogonal states, so we only need to consider states that are
limited to individual ∆x-∆p cells.

To count the maximum number of orthogonal states, we should choose the
product ∆x∆p to be as small as the inequality (4) allows. Real molecules have
internal structure, and in that case we could have more than one orthogonal state
per location-momentum cell. The ideal gas model pretends that the molecules
don’t have any internal structure, so each minimal ∆x-∆p cell contributes only one
state when counting the number of orthogonal states.

(Continued on the next page...)

7 This isn’t quite true: a sharp cutoff at the boundaries of a location-cell is not compatible with a sharp cutoff at
the boundaries of a momentum-cell, or conversely, but the counting described here is still valid when the boundaries
are fuzzy. Section 5 demonstrates this in detail.

5



cphysics.org article 23206 2022-10-23

Now, suppose that the particle is confined to a volume V and that its kinetic
energy is limited to a maximum value K. The number of location-cells in the
D-dimensional “volume” V is

V

(∆x)D
. (5)

The particle’s kinetic-energy observable is p2/2m, where p is its momentum-observable
and m is its mass, and momentum has D components in D-dimensional space, so
the number of momentum-cells consistent with the maximum kinetic energy K is

(pmax)D

(∆p)D
=

(2mK)D/2

(∆p)D
. (6)

The location-cell and momentum-cell can be chosen independently (as long as (4)
is satisfied), so the total number of orthogonal states consistent with the given V
and K is the product of (5) and (6):8,9

Ω(E, V )
∣∣∣
N=1
∝ (2mK)D/2

(∆p)D
V

(∆x)D
∝ (mK)D/2 V

~D
. (7)

For an ideal gas, the total energy E is the same as the total kinetic energy K, so
(7) matches the quantity that was denoted ω in equation (1).10

That’s for a single particle. The next task is to generalize this to N particles.

8 I’m ignoring the overall dimensionless numerical coefficients, which don’t affect many calculations in statistical
mechanics anyway (article 66313).

9 Also remember that this assumes the ideal gas model, which means the particle does not have any internal
structure. In a more realistic model, we would need to include another factor to account for states that are orthogonal
to each other due to different excitations of the internal structure (different rotational or vibrational states, for
example) despite being contained in the same location-momentum cell.

10 Article 73054 describes a more general model in which E 6= K.
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5 An explicit set of orthogonal 1-particle states

This section fills in the details that were promised in footnote 7.
Quantum theory is formulated in terms of operators on a Hilbert space. Ele-

ments of the Hilbert space are used to represent states, and linear operators on the
Hilbert space are used to represent observables (things that could be measured).
For the standard quantum model of a single nonrelativistic particle with no internal
structure, elements of the Hilbert space are conveniently represented11 by complex-
values functions ψ(x) of the D spatial coordinates x = (x1, ..., xD). In this context,
ψ(x) is called a wavefunction. Each wavefunction must be square-integrable,

0 <

∫
dDx |ψ(x)|2 <∞,

and two wavefunctions ψ1 and ψ2 are orthogonal to each other if12∫
dDx ψ∗1(x)ψ2(x) = 0,

where the asterisk denotes complex conjugation. The location and momentum
observables are represented by linear operators, but for expedience I’ll describe
them this way instead:

• The particle is localized in a region R if ψ(x) = 0 for all x /∈ R.

• The particle has momentum limited to a set S if ψ̃(p) = 0 for all p /∈ S, with

ψ̃(p) ≡
∫
dDx e−ip·x/~ψ(x).

(Continued on the next page...)

11 Notice the two distinct layers of representation: elements of the Hilbert space are used to represent states, and
(in this example) functions are used to represent elements of the Hilbert space.

12 This definition of orthogonality is consistent with the one used in the preceding sections, but I won’t explain
why here because that would require a review of quantum theory.
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Now, partition space into a grid of cells of size ∆x in each dimension. For each
of these cells R, define a set of wavefunctions

ψR,n(x) =

{
exp

(
i2π n·x

∆x

)
if x ∈ R,

0 otherwise,

where the D components of n are arbitrary integers. Two such wavefunctions
ψR,n and ψR′,n′ are obviously orthogonal to each other when R 6= R′, because the
location-cells don’t overlap, and they also turn out to be orthogonal to each other
when n 6= n′. (The fact that the components of n and n′ are integers is essential for
this.) Also, the Fourier transform ψ̃(p) of ψR,n(x) turns out to be mostly limited
to momenta in a cell of width ∆p ∼ ~/∆x about p = 2π~n/∆x. To see this, use
the fact that the Fourier transform of a rectangular-window function ψR,n(x) is a
sinc function.

Altogether, this shows that if ∆x∆p ∼ ~, then we can indeed construct a set
of mutually orthogonal single-particle states with one per ∆x-∆p cell, even though
the state associated with a given cell is not strictly contained in that cell. This
justifies the approach that was used in section 4.
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6 Derivation for N > 1

To generalize the result (7) to N particles, we need a few more concepts. The most
important concept is this one:

• If A and B are two N -particle states, and if a given ∆x-∆p cell is occupied
in one of them but not in the other one, then those two N -particle states are
orthogonal to each other, because measuring the number of particles in that
∆x-∆p cell would distinguish between A and B with certainty.

From this, we can already anticipate that the number of orthogonal N -particle
states is something like ωN , the number of ways of assigning N objects to ω cells.
To be more careful, we also need these concepts:

• The quantum model of an ideal gas doesn’t have any observables tied to
individual particles. Instead, it has observables that count the number of
particles in a given region and a given range of momenta (subject to the caveat
mentioned in footnote 7). When such an observable is measured, it tells us
the number of particles detected, but it doesn’t tell us which particles were
detected – a concept that simply doesn’t apply in this model.13 Therefore,
we should count the number of ways of assigning the particles to ∆x-∆p cells
modulo permutations of the particles – because in this model, permuting the
particles doesn’t change the state at all.

• To do the counting correctly for arbitrary N , we would also need to know
whether the particles are bosons or fermions: two or more identical bosons
can occupy the same ∆x-∆p cell, but two or more identical fermions cannot.
However, this article assumes that N is small compared to (7), which is true
in most practical applications.14 In this case, the distinction doesn’t make
a significant difference, because only a negligible fraction of the N -particle
states would have cells with ≥ 2 particles even if this is allowed.

13 In traditional terminology, the particles are all identical or indistinguishable. These are ust names, not good
descriptions (footnote 5).

14 One exception is the interior of a white dwarf star.
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Now we have all the ingredients we need to finish the derivation. As in equation
(1), let ω denote the number of orthogonal states when N = 1, which is given by
(7). If N � ω, so that the number of states with more than one particle per cell is
negligible (even if it’s allowed, as it is for bosons), then the number of orthogonal
N -particle states is well-approximated by

ωN

N !
. (8)

This doesn’t correctly count states that have more than one particle in the same cell,
not even if they’re bosons, but the number of such states is negligible if N � ω.
With that qualification, (8) is a good approximation to the number of ways of
assigning N particles to ω cells, modulo permutations of the particles.

This completes the derivation of equation (1), including the N -dependence of
the coefficient that was not shown there.
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7 Result for an energy shell

The preceding sections counted the number of orthogonal states with energy ≤ E
in a volume ≤ V , with the result Ω(E, V ) ∝ EDN/2V N .

The result is essentially unchanged if we consider states within a narrow range
of energies, between E ′ and E for some very small difference E − E ′. To see this,
use

Ω(E ′, V )

Ω(E, V )
=

(
E ′

E

)DN/2
.

This shows that for N ∼ 1023, the number Ω(E ′, V ) will be negligible compared
to Ω(E, V ) even when the ratio E ′/E is only slightly less 1, which means that the
interval E − E ′ can be very narrow.
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8 Is the entropy always finite?

Section 5 used 1-particle states that are strictly localized in a bounded region of
space (and approximately localized in a bounded part of the momentum domain).
Such states exist in strictly-nonrelativistic quantum mechanics, but that kind of
model is only an approximation to relativistic quantum field theory. In relativistic
quantum field theory, states cannot be strictly localized in any bounded region
of space.15 That’s okay, because they can still be localized well enough for all
practical purposes, so the derivation shown in the preceding sections is still valid
to an excellent approximation.

A more serious issue arises in models that are contrived so that Ω(E, V ) is
infinite. An example of such a model would be a quantum field theory with a
uncountably infinite number of different species, say with a continuum of different
masses. Such models do not have any realistic applications, though, and they
are generally excluded even from the set of not-necessarily-realistic models that
theoretical physicists study for the sake of building general intuition. Theoretical
physicists typically consider only models for which Ω(E, V ) is finite, a condition
that can be expressed more precisely as a nuclearity requirement,16 so that the
system has sensible thermodynamic properties.17

15 This is one implication of a general result called the Reeh-Schlieder theorem, which is reviewed in Witten
(2018).

16 Section V.5.1 in Haag (1996)
17 More fundamentally, combining quantum physics and gravity leads to something called the holographic princi-

ple. This is a model-independent principle, in the sense that any viable combination of quantum physics and gravity
should satisfy it. Roughly, this principle implies that the entropy in a bounded region of space is finite, and since it’s
model-independent, this must be true even in a model that accounts for everything, not just in obviously-incomplete
models like the one studied in this article.
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