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Time Evolution in Quantum Theory
Randy S

Abstract In quantum theory, time evolution (the way
a physical system changes in time) is usually expressed in
terms of an operator called the hamiltonian. In a model
with time translation symmetry, the hamiltonian can also be
regarded as an observable representing the system’s total en-
ergy. This article introduces some basic principles and tools
related to time evolution in quantum theory, with emphasis
on the role of the hamiltonian and its conceptual relation-
ship to the action principle.
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1 The Heisenberg picture

Things that we could measure – or the mathematical entities that represent things
we could measured – are called observables. In classical physics, all observables
are compatible with each other, so we can treat them as having well-defined values.
In any given model, we can specify those values at some initial time and then use
the model’s equations of motion to determine the values at other times.1

In quantum physics, most observables are not compatible with each other, so we
cannot treat them all as having well-defined values (article 03431). Mathematically,
observables are represented by operators on a Hilbert space,2 and most operators
do not commute with each other. In this case, describing time evolution of the
values of the observables would not make sense. However, we can still describe
time evolution using equations that relate observables at different times to each
other. This is called the Heisenberg picture.

The time slice principle says that the algebra generated by the set of observ-
ables associated with any one time (any “time slice”) should include the operators
representing all observables – including those associated with other times.3 Quan-
tum theory does not usually predict the outcomes of individual measurements, but
it does predict their statistics (article 03431). The time slice principle is important
for predicting anything at all.

1A nonrelativistic model has a preferred time coordinate t. A relativistic model doesn’t have a preferred time
coordinate, but if the prescribed spacetime metric is globally hyperbolic (Witten (2021)), then we can choose
a time coordinate t such that any hypersurface of constant t is a Cauchy surface. For the rest of this article, the
prescribed spacetime metric is assumed to be globally hyperbolic, t denotes a chosen time coordinate, and the word
time refers to this chosen coordinate. This way, the statements in this article apply to both nonrelativistic and
relativistic models.

2More carefully: observables are represented by elements of an abstract algebra (which should at least have
the structure of a C*-algebra, as defined in Murphy (1990)), and states are usually constructed by choosing a
representation of the algebra in terms of operators on a Hilbert space (Witten (2021)).

3More carefully: the time slice principle says that the set of observables associated with any given finite interval
of time should include the operators representing all observables (Schreiber (2008)).
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2 Unitary time evolution operators

Let Ω(t) be the set of all observables associated with time t. Let s be a fixed
reference time, and suppose that for each observable A(s) ∈ Ω(s) at the reference
time, the corresponding observable A(t) ∈ Ω(t) at time t is given by

A(t) = U−1(s, t)A(s)U(s, t), (1)

where U(s, t) is a unitary operator that depends on s, t but not on A. The unitary
operators U(s, t) are called time evolution operators. We can think of A(t)
and A(s) as the “same” observable at different times, represented by different
operators because we are using the Heisenberg picture. The time slice principle can
be enforced by requiring that the time evolution operators belong to the algebra
generated by the operators in Ω(s).

The statement that U(s, t) is unitary means4

U ∗(s, t) = U−1(s, t). (2)

The reference time s is arbitrary. To change it from s to a new reference time s′,
define U(s′, t) by the condition

U(s, s′)U(s′, t) = U(s, t) (3)

so that (1) implies
A(t) = U−1(s′, t)A(s′)U(s′, t).

4In this article, A∗ denotes the adjoint of an operator A, as in much of the math literature. In a matrix
representation, the adjoint is usually denoted A† instead. Article 74088 comments on the advantages of each notation.
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3 The Schrödinger picture

When time evolution is implemented by a unitary transformation as in (1), we can
use an alternate formulation in which all time-dependence is carried by the state
(article 03431) instead of by the observables. This alternative formulation is called
the Schrödinger picture.

To define the Schrödinger picture, choose a reference time s, and consider a
state of the form5

ρ(· · · ) =
〈ψ| · · · |ψ〉
〈ψ|ψ〉

. (4)

If we define ∣∣ψ(t)
〉
≡ U(s, t)|ψ〉 (5)

where U(s, t) are the time evolution operators in equation (1), then

〈ψ|A(t)|ψ〉 =
〈
ψ(t)

∣∣A∣∣ψ(t)
〉

(6)

〈ψ|ψ〉 =
〈
ψ(t)

∣∣ψ(t)
〉

with A ≡ A(s). Equation (6) is a trivial identity, but the left- and right-hand sides
suggest two different ways of thinking. On the left-hand side, observables are time-
dependent and states are not. That’s the Heisenberg picture. On the right-hand
side, the state is time-dependent and observables are not. That’s the Schrödinger
picture.

5In this case, the state can be represented by a single state-vector |ψ〉. Articles 77228 and 03431 introduce a more
general perspective that motivates the notation ρ(· · · ).
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4 Which picture is better?

Observables may be time-dependent in a way that cannot be described by a unitary
transform (1) alone, even though the time slice principle is still respected. In
that case, we can still define a Schrödinger picture by moving some of the time-
dependence to the state (the part that can be implemented by a unitary tranform
(1)), but not all of it. In this case, the Heisenberg picture is conceptually simpler.

Even in a model where time evolution is described by a unitary transformation
(1), different pictures have different advantages:

• The Heisenberg picture tends to make general principles easier to express, at
least principles that relate directly to observables, like the causality principles
in relativistic quantum field theory (article 21916).

• The Schrödinger picture can make some calculations easier to manage. It can
also be useful conceptually: one definition of quantum field theory6 uses an
attractive generalization of the Schrödinger picture in which Hilbert spaces
are associated with arbitrary hypersurfaces in arbitrary spacetimes.7

• An interaction picture, in which some time-dependence carried by observ-
ables and some by the state, is convenient in many practical calculations.

The rest of this article uses the Heisenberg picture, except in sections 7 and 10,
where the Schrödinger picture is used instead.

6Monnier (2019)
7Article 21916 lists a few references about different definitions of quantum field theory.
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5 Time translation symmetry

The rest of this article focuses on models with time translation symmetry. A model
is said to have time translation symmetry if it satisfies (1) with time evolution
operators U(s, t) that depend only on the difference t − s, regardless of which
reference time s we use. In this case, we can define

U(t− s) ≡ U(s, t). (7)

Set s′ = 0 and s = −t′ in equation (3) to deduce that the time translation operators
U(t) satisfy

U(t′)U(t) = U(t′ + t) U(0) = 1, (8)

which implies
U−1(t) = U(−t).

It also implies that all of the time translation operators commute with each other.8

Equations (1) becomes9

A(t+ s) = U−1(t)A(s)U(t) (9)

for any two times s, t.
To enforce the time slice principle, the time evolution operators U(t) should

themselves be expressible entirely in terms of the observables associated with any
one time. The next section explains how this can be done efficiently, by writing the
unitary operators U(t) in terms of a single self-adjoint operator that can in turn
be written in terms of observables.

8Proof: (8) holds for arbitrary t and t′, so we can exchange t and t′ to get U(t)U(t′) = U(t + t′). Compare this
to (8) and use the trivial identity t′ + t = t+ t′ to deduce U(t′)U(t) = U(t)U(t′).

9To see this, use the identity U(t+ s− s) = U(t).
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6 The hamiltonian

Let H be a self-adjoint operator: H∗ = H. In some ways, such an operator can be
manipulated as though it were an ordinary real variable. In particular, the family
of operators

U(t) ≡ exp(−iHt) (10)

has the properties (8).10 It also has the property

d

dt
U(t) = −iHU(t). (11)

According to Stone’s theorem,11 the converse is also true: any continuous family
of unitary operators satisfying (8) can be written in the form (10) for some operator
H.12 Equation (9) can also be written in differential form:13

i
d

dt
A(t) =

[
A(t), H

]
.

This is the equation of motion for the observables A(t) in the Heisenberg picture.
The operator H is called the hamiltonian. Equations (9) and (10) say that

the hamiltonian generates translations in time. A model is typically defined by
specifying its observables at one time and then specifying the hamiltonian, because
this implicitly specifies observables at all other times through equations (9) and
(10). The time slice principle can be enforced by expressing the hamiltonian in
terms of observables at a given reference time.

10The previous section used t for a point in time and s for a time shift, but that conceptual distinction is not
important here.

11Riesz and Sz.-Nagy (1990), section 137, page 385
12Even though the unitary operators U(t) are defined on the whole Hilbert space, their generator H may be

unbounded, which means that it might not be defined on the whole Hilbert space, but it is defined on a dense
subset of the Hilbert space. Where it is defined, the operator H is self-adjoint.

13The commutator of two operators A and B is defined by [A,B] ≡ AB −BA.
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7 The Schrödinger equation

In the Schrödinger picture, using the notation (7) in equation (5) gives∣∣ψ(t)
〉

= U(t)|ψ〉. (12)

Together with equation (11), this implies

i
d

dt

∣∣ψ(t)
〉

= H
∣∣ψ(t)

〉
. (13)

This is often called the Schrödinger equation.14

14Sometimes this name is used with a more narrow meaning, for the specific case of a strictly nonrelativistic
single-particle model.
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8 Energy

We can enforce the time slice principle by expressing the hamiltonian in terms of
observables at a given reference time. This doesn’t necessarily make H itself an
observable (it would if all the constituent observables were compatible with each
other), but the hamiltonian is typically considered to be an observable. We call
this observable the system’s total energy. Treating this as an observable can be
mathematically convenient, even though we clearly cannot actually measure the
total energy of a complex system of unlimited size. In any case, this defines the
system’s total energy only modulo an overall constant term, because if c is any
constant, then replacing H → H + c doesn’t affect equation (9):

ei(H+c)tAe−i(H+c)t = eiHtAe−iHt (14)

for any operator A.
Time translation symmetry implies that the total energy is conserved (inde-

pendent of time):
U−1(t)HU(t) = H. (15)

This is just the rule (9) applied to the observableH, using the fact thatH commutes
with itself. Equation (15) holds even if the hamiltonian is expressed in terms of
other observables that are not individually invariant in time.

This article uses natural units in which Planck’s constant ~ is equal to
1.15 Its value in Standard International units is ~ ≈ 1.05 × 10−34 kg · m2/s. If t
is expressed in seconds and H (the energy observable) is expressed in Joules, then
equation (10) becomes

U(t) = exp(−iHt/~). (16)

15The quantity h ≡ 2π~ is also called Planck’s constant. The symbol ~ is pronounced “h-bar.”
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9 Stationary states

In a model with time translation symmetry, consider a state of the form (4) again,
and now suppose that the state-vector |ψ〉 is an eigenvector of the hamiltonian H:

H|ψ〉 ∝ |ψ〉.

Such a state is called stationary because〈
ψ
∣∣A(t)

∣∣ψ〉
is independent of t in this case. In a stationary state, nothing changes in time.

Since H is the observable describing the system’s total energy, we can think of
a stationary state as one that has a strictly well-defined total energy. In such a
state, if we could measure the system’s total energy, we would always get the same
answer.16

At first, this might seem to contradict classical experience, where we often
refer to the energy of a moving object. According to quantum theory, a moving
object cannot have a strictly well-defined energy, even though it’s energy may be
well-defined for most practical purposes. The next section shows that even a tiny
spread in energy can accommodate rapid macroscopic motion, so there is no conflict
with everyday experience.

16This is an oxymoron, because in a model that is rich enough to describe the measurement itself as a time-
dependent physical process, physical measurement processes cannot occur in a stationary state! A stationary state
is one in which nothing changes in time. Most textbooks gloss over this, because – for legitimate practical reasons –
most textbooks only consider what article 03431 calls the artificial approach to measurement, instead of using the
(much more difficult) natural approach in which measurement is treated as a physical process within the model
itself.
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10 Energy, stationary states, and motion

This section shows that an everyday object can have an energy and velocity that
are both sharply defined for all practical purposes.

Consider an object with mass m moving with constant velocity v, and suppose
that at any given instant, its location is predictable as far as we can tell using
measurements with resolution ∆x, which may be much smaller than the size of
the object. (As an example, we’ll take ∆x ∼ 1 femtometer, which is comparable
to the radius of a proton.) Suppose for simplicity that the object’s state has the
form (4), defined by a single state-vector. Use the Schrödinger picture, so that all
time-dependence is carried by the state-vector:

∣∣ψ(t)
〉
. Any two state-vectors in

which the object’s location differs by more than ∆x must be essentially orthogonal
to each other, because we assumed that its location is predictable as far as we can
tell using measurements with that resolution. The object is moving with constant
velocity v, so we must have 〈

ψ(t2)
∣∣ψ(t1)

〉
≈ 0 (17)

whenever t2 − t1 & ∆x/v.
Vaidman (1992) showed that if〈

ψ(t2)
∣∣ψ(t1)

〉
= 0, (18)

then the spread in energy (quantified by the standard deviation) must be at least

∆E ≡
√
ρ(H2)− ρ(H)2 ≥ π~

2|t2 − t1|
, (19)

where H is the hamiltonian and

ρ(· · · ) ≡ 〈ψ| · · · |ψ〉
〈ψ|ψ〉

is the state represented by the state-vector
∣∣ψ(t)

〉
at any time t. (Thanks to equa-

tion (15), the value of t doesn’t matter in ρ(Hn).) For the scenario described above,
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we need to achieve the condition (18) whenever |t2− t1| ∼ (∆x)/v, the time needed
for the object to pass from one resolution cell to the next. This gives the bound

∆E &
π~v
2 ∆x

.

This is only a bound, so to determine how small ∆E can actually be, we need to
consider an example. Consider an initial state-vector of the form∣∣ψ(0)

〉
=
∑
n

zn|n〉 (20)

where each unit vector |n〉 is a stationary state with energy En:

H|n〉 = En|n〉 〈n|n〉 = 1.

The Schrödinger equation (13) is satisfied by∣∣ψ(t)
〉

=
∑
n

zn(t) |n〉

with
zn(t) ≡ zn e

−iEnt.

This implies 〈
ψ(t2)

∣∣ψ(t1)
〉

=
∑
n

|zn|2eiEn(t2−t1)/~. (21)

For simplicity, suppose that the magnitudes |zn| are all equal to 1 and that the
energies En are equally spaced over an interval of width δE. For a macroscopic
object, we can assume that the number N of terms in the sum is so large that δE/N
is negligible compared to δE, so the sum is well-approximated by an integral:

〈
ψ(t2)

∣∣ψ(t1)
〉
∝ 1

δE

∫ ε+δE

ε

dE eiE(t2−t1)/~ ∝ ~
(t2 − t1) δE

sin

(
(t2 − t1) δE

2~

)
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with proportionality factors that are independent of t2 − t1 and δE. The function
on the right-hand side is exactly zero when |t2 − t1| = 2π~/δE, and the standard
deviation of the energy is

∆E =
δE√

12
=

2π~√
12|t2 − t1|

>
π~

2|t2 − t1|
,

which is consistent with the bound (19). More importantly, the function on the
right-hand side is negligible whenever |t2 − t1| � ~/δE so if we take

δE � ~v
∆x

,

then we achieve the condition (17) whenever t2− t1 & ∆x/v, as desired. Expressed
as a fraction of the object’s kinetic energy E ≈ mv2/2 (assuming that the object is
moving slowly enough to use the nonrelativistic approximation), this inequality is

∆E

E
� 2~

(∆x)mv
. (22)

For a quantitative example, suppose

∆x = 1 femtometer

m = 1 gram

v = 2000 meter/second.

Then the required spread in energy, according to (22), is

∆E

E
� 10−22.

This says that for all practical purposes, the object can have a sharply defined
kinetic energy, even if it is moving with a constant velocity with a sharply defined
location at any given instant.

If the state had a perfectly well-defined energy, then nothing would change in
time (section 9). The calculation in this section explains why that simple fact does
not contradict everyday experience.
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