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The Free Scalar Quantum Field:
Waves
Randy S

Abstract Article 30983 showed that the model of a free scalar
quantum field includes states that behave like localized particles.
This article shows that the same model includes states that behave
more like classical waves. This article also derives two examples
of how the field is affected by an external source, an entity that
influences the field but is not influenced by the field. (This is used as
an easy approximation to a more complete – but also more difficult
– model in which the influences go both ways.) One example shows
that a time-independent source is surrounded by a “force field,”
analogous to the static electric field that surrounds a point charge
in electrodynamics. Another example shows that a time-dependent
source generates a state of the quantum field that behaves like a
classical wave.
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1 Introduction

In quantum theory, observables are represented by operators on a Hilbert space.1 In
quantum field theory (QFT), observables are usually expressed in terms of auxiliary
operators called field operators. The field operators themselves may or may not be
observables, depending on the model. In the free scalar model, the field operators
φ(t,x) can be included among the model’s observables.2,3 A measurement of the
observable φ(t,x) can be described as a measurement of the amplitude of the field
at the location x at time t.

In classical physics, particles and fields are distinct concepts. A given classical
model may include both, but they are separate entities. In QFT, the distinction
is blurred: a model may have some states that behave approximately like classical
fields and some states that behave approximately like localized particles.4 This
happens even in the free scalar model, which has only a single quantum field. Article
30983 explained how the field operators may be used to construct observables that
act like particle detectors. This article describes states that behave more like
classical fields, to a good approximation.

Any given observable can be measured in any given state, at least in what
article 03431 calls the artificial approach to measurement. In that trivial sense,
we can always apply both field-like concepts or particle-like concepts to the same
state, just by deciding what to measure. However, in most states, the outcomes of
particle-counting measurements will have a large variance, as will the outcomes of
field-amplitude measurements. States that give consistent outcomes with respect
to particle-counting observables were constructed for the free scalar model in article
30983. This article constructs states that give consistent outcomes (low variance)
with respect to field-amplitude observables instead.

1Article 03431
2The technical caveat described in article 37301 will be ignored here. It only matters in the infinite-space limit.
3Some aspects of the free scalar model are studied in articles 00980 and 30983. As in those articles, x =

(x1, x2, ..., xD) denotes a point in D-dimensional space, and t is the time coordinate.
4Most states don’t behave like either one, although dynamic phenomena like decoherence (article 03431) may

tend to select states that do behave approximately like one or the other, depending on the circumstances.
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2 The model

A model of a single free scalar quantum field can be constructed in a relatively
striaightforward way by treating space as a lattice.5 This article writes and manip-
ulates integrals and derivatives of the field operators as though the operators were
defined at individual points in space. This can be justified by using the lattice-
based definition and then agreeing that only low-resolution observables should be
taken seriously.

Let x = (x1, ..., xD) denote a point in D-dimensional space, and let t denote
the time coordinate. The equation of motion for the free scalar field φ(t,x) has the
form

φ̈−∇2φ+m2φ = 0. (1)

where each overhead dot denotes a derivative with respect to t, ∇ denotes the
gradient with respect to x, and m is the mass of one particle. For any m, the field
operators satisfy the equal-time commutation relations6[

φ(t,x), φ(t,y)
]

= 0[
φ̇(t,x), φ̇(t,y)

]
= 0[

φ(t,x), φ̇(t,y)
]

= iδ(x− y). (2)

Observables localized in a spacetime region R are constructed from the field op-
erators φ(t,x) with (t,x) ∈ R. The hamiltonian, the operator that generates
translations in time, is

H =

∫
dDx

(
φ̇2(t,x) +

(
∇φ(t,x)

)2

2
+m2φ(t,x)

)
+ constant. (3)

The hamiltonian is independent of time,5 even though the integrand is not. The

5Article 52890
6[A,B] ≡ AB −BA
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equation of motion and commutation relations are both satisfied by7

φ(t,x) =

∫
dDp

(2π)D
a(p)e−iωt+ip·x√

2ω
+ adjoint (4)

with ω(p) ≡
√

p2 +m2, if the operators a(p) satisfy

[a(p), a(p′)] = 0 (5)

[a(p), a†(p′)] = (2π)D δ(p′ − p). (6)

7Article 37301 addresses technicalities in the massless case (m = 0). Those technicalities won’t be important here.
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3 Field-amplitude measurements

The field operator φ(t,x) is the observable that would correspond to a measurement
of the field at the spacetime point (t,x), but a real measurement can’t actually
resolve anything at a point. Mathematically, measurements of this observable have
huge variance, becoming infinite in the continuum limit (section 5). This is true in
any state, including even the vacuum state. That’s a feature, not a flaw: it’s a sign
that the theory “knows” that a real measurement can’t actually resolve anything at
a point. If we ask the theory to predict the outcome of an unrealistic measurement,
we shouldn’t be surprised when it gives us an unrealistic answer.

Real measurements have finite resolution in space. To construct an observable
corresponding to a field-amplitude measurement with finite spatial resolution, let
g(x) is a real-valued function with a finite width, and define

φ(t, g) ≡
∫
dx g(x)φ(t,x). (7)

This is called a smeared field operator. The width of the function g(x) corresponds
to the spatial resolution of the measurement. A convenient example of such a
function is

g(x) ∝ e−x
2/σ2

∫
dDx |g(x)|2 = 1. (8)

Sections 5-6 construct a family of states in which measurements of such observables
have low variance. They are states in which the field has a relatively well-defined
amplitude. The fact that such states exist helps explain why classical field theory
is often a good-enough approximation.8 Section 7 explains how these states are
related to states that behave like particles.

8Footnote 4 mentioned another part of the explanation.
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4 States that behave like waves: criterion

Let ρ(· · · ) denote any state (article 03431), so that ρ
(
φ(t,x)

)
is the expectation

value of the field operator φ(t,x). The fact that the equation of motion (1) is linear
in the field implies ((

d

dt

)2

−∇2 +m2

)
ρ
(
φ(t,x)

)
= 0. (9)

This is true for any state, but it doesn’t necessarily mean that the state behaves
like a classical wave, because it doesn’t imply that any collection of field-amplitude
measurements would be consistent with each other. A necessary condition for a
state ρ(· · · ) to have an approximately well-defined value of an observable A is that
the variance

ρ(A2)− ρ2(A)

should be small.9 The variance of the raw field operator φ(t,x) is not small in any
state,10 but the variance of the smeared field operator (7) can be small in some
states if the smearing function is wide enough. Section (5) describes a family of
states in which smeared field operators have relatively small variance for all times
t. For such states, the concept of a classical field11 is a good approximation.

9In a more realistic model, small could be quantified by comparison to something from familiar experience. In

this toy model, it can be compared to ρ2(A) ≡
(
ρ(A)

)2
.

10It scales like 1/εD−1 (or like log ε if D = 1), where ε is the distance between neighboring points in space. This
is finite when space is treated as a lattice, but it diverges in the continuum limit. To derive how it scales with ε,

start with a result derived in article 00980, which says that the variance of φ(t,x) is
∫

dDp
(2π)D

(p2 + m2)−1/2 in the

infinite-volume limit, where the integral is over a Brillouin zone, whose linear size scales like 1/ε (article 71852). For
large p, this scales like the integral of pD−2 from zero to 1/ε, which gives the result quoted at the beginning of this
footnote. This is consistent with dimensional analysis of the canonical commutation relations, which says that the
product φφ̇ has the same units as 1/εD.

11Article 49705
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5 States that behave like waves: construction

For the model defined in section 2, a state |0〉 satisfying

a(p)|0〉 = 0 (10)

has the lowest possible energy, so it represents completely empty space (vacuum).
This section constructs a family of states with classical-wave-like properties by
applying unitary operators to the vacuum state.

Given any complex-valued function β(p), Section 6 constructs a unitary oper-
ator U that satisfies

U †a(p)U = a(p) + β(p) (11)

for all p. If |0〉 is the vacuum state, then equation (11) implies that the state

|β〉 ≡ U |0〉 (12)

satisfies12

a(p)|β〉 = β(p)|β〉. (13)

This is called a coherent state.13 This section shows that |β〉 behaves like a
classical wave, according to the criterion in section 4, if

∣∣β(p)
∣∣ is large enough.

Equations (4) and (11) imply

U †φ(t,x)U = φ(t,x) + φβ(t,x) (14)

with

φβ(t,x) ≡
∫

dDp

(2π)D
β(p)e−iωt−ip·x√

2ω
+ complex conjugate. (15)

Using the abbreviations

ρβ(· · · ) ≡ 〈β| · · · |β〉
〈β|β〉

ρ0(· · · ) ≡
〈0| · · · |0〉
〈0|0〉

,

12More detail: a(p)|β〉 = a(p)U |0〉 = U
(
a(p) + β(p)

)
|0〉 = β(p)|β〉.

13This name is standard, even though the word coherent is heavily overloaded. It’s also called a Glauber state.
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Equation (10) implies
ρ0

(
φ(t,x)

)
= 0, (16)

and combining this with (14) gives

ρβ
(
φ(t,x)

)
= ρ0

(
φ(t,x) + φβ(t,x)

)
= φβ(t,x).

This is consistent with equation (9), which holds for all states.
The next goal is to calculate the variance of the smeared field operator (7) in

this state. First consider the correlation function

f(x− y) ≡ ρβ
(
φ(t,x)φ(t,y)

)
− ρβ

(
φ(t,x)

)
ρβ
(
φ(t,y)

)
. (17)

Use (14) and (16) to get

f(x− y) = ρ0

(
φ(t,x)φ(t,y)

)
. (18)

All dependence on the function β has cancelled. Use equations (6), (4), and (10)
in (18) to get

f(x− y) =

∫
dDp

(2π)D
e−ip·(x−y)

2ω
. (19)

This diverges as y → x, so the variance of the raw field operator is infinite.14 On
the other hand, the variance of the smeared field operator is

v ≡ ρβ
(
φ2(t, g)

)
− ρ2

β

(
φ(t, g)

)
= ρ0

(
φ2(t, g)

)
=

∫
dDx dDy g(x)f(x− y)g(y).

For the smearing function (8), evaluating the integrals over x and y gives

v ∝
∫

dDp

(2π)D
e−σ

2p2/2

2ω(p)
. (20)

14Footnote 10 in section 4
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To evaluate the integral (20), consider these two cases:

• m > 0 and σ � 1/m.

• m = 0.

In the first case, the factor e−σ
2p2/2 in the integrand enforces the condition p2 � m2,

so (20) becomes

v ≈ 1

2m

∫
dDp

(2π)D
e−σ

2p2/2 ∝ 1

mσD
.

The last expression follows just from dimensional analysis. In the second case
(m = 0), dimensional analysis implies

v ∝ 1

σD−1
.

In both cases, the variance is small if σ is sufficiently large.
Altogether, this shows that a coherent state of sufficiently large amplitude be-

haves like a classical wave with respect to sufficiently coarse field-amplitude mea-
surements: the standard deviation in the measurement outcomes is much less than
the expectation value.

10
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6 Coherent states

This section explains how to construct a unitary operator that satisfies equation
(11).

According to the commutation relations (6), the operator

B ≡
∫

dDp

(2π)D
β(p)a†(p) (21)

satisfies
[a(p), B] = β(p). (22)

The operator B −B† is self-adjoint, so the operator defined by

U(θ) ≡ e(B−B†)θ (23)

is unitary:
U †(θ) = U−1(θ) = U(−θ).

Equation (22) implies15

d

dθ
U(−θ)a(p)U(θ) = U(−θ)[a(p), B]U(θ) = β(p).

This is a first-order differential equation for U(−θ)a(p)U(θ), with initial condition

U(−θ)a(p)U(θ)
∣∣
θ=0

= a(p).

The unique solution of this differential equation with this initial condition is

U(−θ)a(p)U(θ) = a(p) + θβ(p). (24)

Set θ = 1 to get equation (11).

15The derivative was calculated without changing the order of any operators that don’t commute with each other.

11



cphysics.org article 22792 2023-11-12

7 Coherent states and particles

This section explains how to express a coherent state as a superposition of n-particle
states. The superposition involves all values of n ∈ {0, 1, 2, ...}. More carefully: a
coherent state may be written as a superposition of state-vectors that would, by
themselves, represent different numbers of particles. Conversely, an n-particle state
like Bn|0〉 could be written as a superposition of state-vectors that would, by them-
selves, represent classical-ish waves with different amplitudes. Remember, though,
that thinking of a coherent state as being “made of” particles – or conversely – is
no more (or less) correct than thinking of a diagonal vector as being “made of”
vertical and horizontal vectors.

Consider the operators

V (θ) ≡ exp

(
θ2

2
[B,B†]

)
eθBe−θB

†
. (25)

Clearly, V (0) = 1. The commutator [B,B†] is proportional to the identity operator
(it commutes with everything), so V (θ) satisfies16

d

dθ
V (θ) =

(
θ[B,B†] +B

)
V (θ)− V (θ)B†.

A derivation similar to the one that led from (23) to (24) gives

eθBB†e−θB = B† + θ[B,B†],

and using this on the right-hand side of the previous equation gives

d

dθ
V (θ) = (B −B†)V (θ).

The operators U(θ) defined by equation (23) clearly also satisfy

d

dθ
U(θ) = (B −B†)U(θ) U(0) = 1.

16The derivative was calculated without changing the order of any operators that don’t commute with each other.

12
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These conditions can only have one solution, so

U(θ) = V (θ).

Together with equations (12), (25), and a(p)|0〉 = 0, this implies

|β〉 ∝ eB|0〉 ≡
∑
n

Bn

n!
|0〉.

Article 30983 shows that Bn|0〉, by itself, would be a state with n particles, but
remember: thinking of a coherent state as being “made of” particles – or conversely
– is no more (or less) correct than thinking of a diagonal vector as being “made
of” vertical and horizontal vectors.

13
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8 Classical versus quantum superposition

Let U(β) be the unitary operator defined as in sections 5-6, with θ = 1, for a given
amplitude-function β(p).17

A classical superposition of two waves β(p) and β′(p) is given by

U(β)U(β′)|0〉 = U(β + β′)|0〉. (26)

This is another coherent state, now with amplitude-function β+β′. That’s different
from the quantum superposition

U(β)|0〉+ U(β′)|0〉. (27)

This is not a coherent state (unless β′ = β).
Even when β′ = β, the two states (26) and (27) are different from each other.

The quantum superposition (27) is 2U(β)|0〉, which is proportional to U(β)|0〉.
Mutually proportional state-vectors are physically equivalent: they both represent
precisely the same physical scenario.18 In contrast, the classical superposition (26)
is U(2β)|0〉, which is physically distinct from U(β)|0〉, because the amplitude of
the wave’s oscillations – which is observable – is twice as great as what it would be
in the state U(β)|0〉.

17Here, the argument of U(β) specifies the function β(p). This is different than the notation U(θ) that was used
in section 6.

18Article 03431
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9 The concept of an external source

In electrodynamics, influences go both ways: charges and currents influence the
behavior of the electromagnetic field, and the electromagnetic field influences the
behavior of charges and current. When learning classical electrodynamics, we often
use a simplified model in which the influence goes only one way. In particular,
we often use Maxwell’s equations with charges and currents whose behavior is
prescribed instead of being influenced by the field.

We can use a similar simplification in quantum physics: instead of using a model
in which two quantum entities influence each other, we can use a model in which an
external entity influences a quantum entity but is not influenced by the quantum
entity. We can take the external entity to be a classical entity, meaning that all of
its associated observables commute with each other.19

Sections 10-13 study the effect of a classical external source – a source that
influences the scalar field but but is not influenced by the scalar field. The external
source is analogous to a prescribed distribution of charge or current in classical
electrodynamics. We will see that the effect of the external source is similar to its
effect in the classical model: a time-independent source is surrounded by a static
field (like the Coulomb field), and an oscillating source generates a propagating
wave in the field.

19We cannot do the opposite: mathematically, we cannot define a model in which a quantum entity (one whose
associated observables don’t all commute with each other) influences a classical entity (one whose associated ob-
servables do all commute with each other), because the influence would necessarily push noncommutativity into
the “classical” entity’s future observables, contradicting the assertion that it is a “classical” entity. Some of the
literature about measurement in quantum theory refers to the idea of a quantum system influencing a classical one.
That makes sense if we read “classical” to mean “large and complex, but still quantum.” It doesn’t make sense if
we read “classical” to mean “involving only observables that strictly commute with each other.”

15
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10 The model with an external source

The external source is a prescribed function J(t,x). In the model with this external
source, the commutation relations are the same as before (equations (2)), but the
field’s time-dependence is governed by the modified equation of motion20

φ̈(t,x)−∇2φ(t,x) +m2φ(t,x) = J(t,x). (28)

The observable representing the system’s total energy is21

H(t) =

∫
dDx

(
φ̇2(t,x) +

(
∇φ(t,x)

)2
+m2φ2(t,x)

2

− φ(t,x)J(t,x)

)
+ constant. (29)

The equation of motion (28) can be used to show that if J(t,x) is independent
of time, then the hamiltonian (29) is also independent of time. If the external
source J(t,x) is not independent of time, then neither is the hamiltonian H(t), so
in this case the total energy of the quantum system is not conserved. Intuitively,
this is because the external source is prescribed: it can influence, but cannot be
influenced by, the quantum system. One-way influences break symmetries that
would otherwise lead to conservation laws, like they do in classical physics.22

As usual, each local algebra Ω(R) is defined to be the algebra generated by the
field operators φ(t,x) for all points (t,x) inside R.

20Compare this to (1).
21Compare this to (3). Article 85870 briefly explains the justification for this model.
22Article 33629
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11 How the source affects the field operator

The commutation relations (2) and the new equation of motion (28) are both
satisfied by

φ(t,x) = φ0(t,x) + φJ(t,x), (30)

where φ0(t,x) is a new notation for the original operator (4) and φJ(t,x) is an
ordinary function (not operator)23 that satisfies

φ̈J(t,x)−∇2φJ(t,x) +m2φJ(t,x) = J(t,x). (31)

Equation (31) has infinitely many different solutions, but the effect of choosing a
different solution can be compensated by choosing a different state (equation (14))
if the difference between the two solutions has the form (15).24

23In equation (30), the term denoted φJ is understood to mean the function φJ times the identity operator.
24This doesn’t work if the difference between the two solutions has the time-independent form φJ ∝ exp(mu · x)

with u2 = 1 (or the corresponding form φJ ∝ u · x in the case m = 0), which satisfies (31) with J = 0, but such a
configuration has infinite energy, which is why it was excluded from (4) in the first place.

17
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12 The effect of a time-independent source

Consider the case where the external source is independent of time. In this case,
we might as well choose the classical solution φJ to be time-independent. This
section shows that the minimum-energy state in this case includes a non-zero field-
amplitude and that the variance is small according to measurements with coarse
enough resolution.

By definition, φJ solves (31). Use the time-independence of φJ to see that the
field operator (30) may be written

φ(t,x) =

∫
dDp

(2π)D

(
a(p)e−iωt + β(p)

)
e−ip·x + adjoint

√
2ω

, (32)

where the complex-valued function β(p) is defined by

φJ(x) =

∫
dDp

(2π)D
β(p)e−ip·x√

2ω
+ complex conjugate (33)

and the operators a(p) still satisfy the same commutation relations (6). Use (32)
to see that the hamiltonian may be written

H =

∫
dDp

(2π)D
ω a†(p)a(p) + constant. (34)

This can also be derived by substituting the modified field operator (32) into the
modified hamiltonian (29), which shows that the constant term is (the identity
operator times) an integral involving J and φJ .25 Equation (34) shows that the
spectrum condition is still satisfied and that a non-zero state-vector |0〉 satisfying

a(p)|0〉 = 0 (35)

still gives a state of the lowest possible energy (zero).

25Article 85870 derives an explicit expression for this integral.

18
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Now consider the mean and variance of the field operator (30) with respect to
this state. Use the abbreviation

ρ(· · · ) ≡ 〈0| · · · |0〉
〈0|0〉

, (36)

and use (35) to get
ρ
(
φ0(t,x)

)
= 0.

This shows that the expectation value of the new field operator is

ρ
(
φ(t,x)

)
= φJ(x), (37)

and it can also be used to show that the variance

ρ
(
φ2(t, g)

)
− ρ2

(
φ(t, g)

)
is not affected by the external source, where φ(t, g) is a smeared version of (32).

Altogether, in the presence of the external source, the minimum-energy state
includes a non-zero field-amplitude and that the variance is small according to
measurements with sufficiently coarse resolution. In other words, an isolated charge
is surrounded by a “force field,” a special configuration of the quantum field that
remains after all temporary disturbances have radiated away. This is analogous to
the static electric field that surrounds a point charge in electrodynamics. To make
the analogy more explicit, consider a point-like source

J(x) ∝ δ(x),

and suppose that the field is massless (m = 0) and that space is three-dimensional
(D = 3). Then equation (31) reduces to −∇2φJ(x) = J(x), which is satisfied by

φJ(x) ∝ 1

|x|
. (38)

This is form of the “force field” (37) surrounding a pointlike charge when m = 0
and D = 3.

19
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13 Quantum radiation from a classical source

Now suppose that the external source and the classical solution φJ are independent
of time for t < 0, but become time-dependent for t > 0. In this case, we can
interpret the state |0〉 satisfying (10) as representing empty space for t < 0. How
does this state behave for t > 0?

Using the abbreviation (36) again, the expectation value of φ0 in this state is

ρ
(
φ0(t,x)

)
= 0

for all t. As in sections 5 and (12), we can use this to confirm that the expectation
value of the new field operator is

ρ
(
φ(t,x)

)
= φJ(t,x) (39)

and that the variance is not affected by the external source. This shows that if the
classical model predicts radiation, then so does the quantum model.

Here’s another way to reach the same conclusion.26 When the external source
depends on time, the time-evolution of the field operator φ(t,x) is no longer gen-
erated by any time-independent hamiltonian,27 but we can still define unitary op-
erators U(t) parameterized by t so that

φ(t,x) = U †(t)φ(0,x)U(t). (40)

Then U(t)|0〉 is the time-dependent state in the Schrödinger picture. To construct
U(t), define β(t,p) so that

φJ(x) =

∫
dDp

(2π)D
β(t,p)e−ip·x√

2ω
+ complex conjugate. (41)

26A similar analysis with more narration is posted here: https://physics.stackexchange.com/q/443760
27In the present example, the hamiltonian (34) works for t < 0, but no time-independent hamiltonian works for

t > 0.

20

https://physics.stackexchange.com/q/443760


cphysics.org article 22792 2023-11-12

For each time t, we can use same approach as in section 6 – after replacing β(p)
with β(t,p) in equation (21) – to construct unitary operators UJ(t) satisfying

U †J(t)a(p)UJ(t) = a(p) + β(t,p).

Then the operators28

U(t) ≡ U †J(0)UJ(t)e−iHt

satisfy (40), with H given by (34). The alternate expression for UJ(t) derived in
section 7 then gives this expression for the Schrödinger-picture state:29

U(t)|0〉 = U †J(0)UJ(t)|0〉 ∝ eB(t)−B(0)|0〉,

where B(t) is defined by equation (21) with β(p) replaced by β(t,p). This shows
that in the Schrödinger picture, starting with the vacuum state |0〉 and then turning
on an external source at time t > 0 produces a coherent state (Glauber state).

28The factor U†J(0) is not needed if J(t,x) = 0 for t ≤ 0, but it is included here so that it works for arbitrary
J(t,x).

29This result uses H|0〉 = 0.
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