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The Wilsonian Effective Action
with Scalar Quantum Fields

Randy S

Abstract In quantum field theory, we don’t yet know how to define most
models of interest directly in continuous spacetime. As a workaround, we can
define many models of interest by treating spacetime as a lattice, with the
understanding that the model is only meant to be used at resolutions much
coarser than the lattice scale. This works well because of universality:
many of a model’s details don’t have any significant effect on the model’s
predictions at such low resolutions. Article 10142 introduced some of the
general concepts used in the study of universality. This article introduces a
specific method for studying universality in greater quantitative detail.
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1 Introduction

Thanks to universality, different models may be practically indistinguishable from
each other at sufficiently low energy.1 For models that differ only slightly from a
given scale-invariant model, we can use the concept of scaling dimension to
anticipate which kinds of changes are likely to be important at low energies and
which ones are not. In d-dimensional spacetime, if the model’s action is modified
by adding an operator O with scaling dimension ∆, then this change tends to be
relevant (increasingly important at lower energies) if ∆ < d, and it tends to be
irrelevant (decreasingly important at lower energies) if ∆ > d. This is explained
in article 10142.

When ∆ = d, the argument based on scaling dimensions does not discern
whether the change’s importance increases or decreases importance as the energy
is decreased. This article uses models of a single scalar field to explain how the
(wilsonian) effective action2 can be used to quantify the rate at which the ef-
fect of a given change increases or decreases as the energy is decreased,3 at least
in the vicinity of a trivial4 scale-invariant model, where approximations are weak
enough to justify expanding in powers of the interaction strength(s). Results from
this method corroborate the rule that perturbations with ∆ < d and ∆ > d are
relevant and irrelevant, respectively, and they reveal which way the balance tips
when ∆ = d.

1In this article, low energy, low momentum, and low resolution are all synonymous.
2The adjective wilsonian (or Wilson) is meant to distinguish this effective action from the generator of one-particle

irreducible (1PI) functions, which is also often called an effective action. Both kinds of effective action are useful in
the study of renormalization and universality, but they are distinct concepts.

3An effective action can also be used as an ansatz for the action of an approximate low-energy model whose
coefficients are to be determined either by fitting the model directly to experimental data or by comparing selected
low-energy predictions to those of a more fundamental model (Lepage (1989)). An example is non-relativistic
quantum electrodynamics (NRQED). NRQED uses an ansatz with a state-dependent low-energy cutoff, the cutoff
depending on the number of each species of particle in the state. Choosing the energy cutoff to be just above the
combined rest-energy of the assumed set of particles is equivalent to restricting each particle’s momentum to be
much less than its mass – the condition that defines the nonrelativistic approximation. NRQED uses an ansatz that
exploits this state-dependent low-energy condition.

4Here, trivial means that interactions are absent.
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2 The models used in this article

Consider a model involving only a single scalar field5 in d-dimensional spacetime,
which will be treated as a lattice, and let I be some time-ordered product of field
operators and their expectation values.6 This article focuses on models in which
the vacuum expectation value of the operator I can be reconstructed from the
euclidean path integral7

〈I〉 ≡
∫

[dφ] e−S[φ]I[φ]∫
[dφ] e−S[φ]

(1)

using Wick rotation. This includes models that are effectively Lorentz symmetric at
resolutions much coarser than the lattice scale. The insertion I[φ] (which represents
the operator I) and the euclidean action S[φ] are both expressed in terms of the
scalar field variables φ(x) and their discretized derivatives with respect to x. In
this article, the euclidean action S[φ] will just be called the action.

5The generalization to multiple scalar fields is straightforward.
6Mnemonic: I stands for insertion or integrand, because of the way this operator is represented in the path

integral (1).
7Article 63548
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3 Momentum-domain field variables

Let ε denote the lattice spacing, the distance between nearest-neighbor points in
the lattice. The original field variables φ(x), one for each point in the lattice, can
be written in terms of a different set of variables φ̃(p) like this:8

φ(x) =
1

Ld

∑
p

eip·xφ̃(p), (2)

where L ≡ Kε is the linear size of the lattice and K is the number of lattice sites
along any of the canonical axes. The components of the momentum9 p are integer
multiples of 2π/L.

The path integral (1) may also be written as an integral over the momentum-
domain field variables φ̃(p), because the integration measures [dφ̃] and [dφ] are
proportional to each other.10,11 This gives the equivalent expression

〈I〉 =

∫
[dφ̃] e−S[φ]I[φ]∫

[dφ̃] e−S[φ]
. (3)

8The coefficient is chosen so that this relationship becomes φ(x) =
∫

ddp
(2π)d

eip·xφ̃(p) in the infinite-volume limit.
9Here, the word momentum is being used as in article 71852. This is related to, but only rarely equivalent to, the

momentum defined by the operators that generate translations in space (article 30983).
10The Jacobian of the transformation (2) is a constant (independent of the field variables).
11The variables φ̃(p) are complex-valued, with φ̃∗(p) = φ̃(−p). The measure [dφ̃] is defined to be the product of

the measures of the real and imaginary parts for each φ̃(p).
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4 Restricting resolution by restricting momentum

For predictions involving only resolutions much coarser than the lattice scale, the
insertions I[φ] used in (3) only need to involve momenta whose components all
have magnitude much less than 1/ε. This condition can also be written

|p| � 1

ε
with |p| ≡

(∑
k

|pk|2
)1/2

, (4)

where the sum is over the d components of p. This way of expressing the low-
resolution condition works in the context of the lorentzian version of the path
integral, too, even though the quantity |p| is not Lorentz invariant.12 When the
euclidean version of the path integral is used, as in this article, the original Lorentz
symmetry of the model in d-dimensional spacetime becomes rotational symmetry
in d-dimensional euclidean space, and then expressing the low-resolution condition
in terms of |p| is natural because |p| is invariant under those rotations – at least
in the infinite-volume limit, where the components of p become continuous real
variables.

12Low resolution is not a Lorentz symmetric concept anyway.
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5 A generalized UV cutoff

The lattice acts as a UV cutoff, because it limits the set of momenta to a bounded
domain. In equation (2), the sum is over all momenta p in the Brillouin zone:
each component of p is an integer multiple of 2π/L in the range between −π/ε
and π/ε. Geometrically, the Brillouin zone has the shape of a hypercube (the
d-dimensional analog of a cube).

More generally, we can define modified field variables

φΓ(x) ≡ 1

Ld

∑
p∈Γ

eip·xφ̃(p) (5)

for any given subset Γ of the Brillouin zone. If Γ is not the full Brillouin zone, then
the variables φΓ(x) are not all linearly independent of each other, and they are not
strictly local: for each spacetime point x, the quantity φΓ(x) may be written in
terms of the original field variables φ(x′) (by writing φ̃(p) in terms of φ(x′)), and
that expression may involve points x′ from all of spacetime. However, if Γ only
excludes momenta with large magnitudes |p| ∼ 1/ε, then φΓ(x) is still effectively
local as far as the model’s low-resolution predictions are concerned.

When the variables φΓ(x) are used, the lattice (the set of allowed values of
x) is still the same as it was before, but the reduced domain Γ acts as a more
restrictive UV cutoff. This allows the UV cutoff and the lattice spacing ε to be
varied independently of each other,13 subject only to the constraint that Γ is a
subset of the Brillouin zone (not a superset). This liberty will be used to implement
a generalized version of the momentum-shell renormalization group.

Conceptually, the purpose of treating spacetime as a lattice is to ensure that
everything is mathematically well-defined. The UV cutoff defined by Γ is an addi-
tional concept used to implement the renormalization group. Section 6 will high-
light one benefit of distinguishing between these two concepts.

13Footnote 54 in section 22
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6 The goal

With φΓ defined as in equation (5), suppose that the original action has the form

S[φΓ] = εd
∑
x

((
∂φΓ(x)

)2

2
+
∑
n

cnOn[φΓ(x)]

)
(6)

where each On[φΓ(x)] is a product of the variables φΓ(x) and its derivatives of
arbitrarily high order: ∂aφΓ(x), and ∂a∂bφΓ(x), and so on. In this case, equation
(3) is generalized to14

〈I〉 ≡
∫

[dφ̃]Γ e
−S[φΓ]I[φΓ]∫

[dφ̃]Γ e−S[φΓ]
. (7)

Now the path integral is only over the quantities φ̃(p) with p ∈ Γ. If the coefficients
cn were all zero,15 then taking the straightforward continuum limit would give a
scale-invariant model.

The goal is to quantify the degree to which the various perturbations On tend
to affect the model’s predictions at low resolution, compared to the predictions
of that scale-invariant model. Expressing the goal this way, using a domain Γ
that is not necessarily the full Brillouin zone, allows using a domain with a more
convenient shape – namely a sphere16 – while still treating spacetime as a lattice.
The quantitative details of the renormalization group analysis will depend on the
shape of Γ,17 because the perturbations On in equation (7) do, but the implications
for the model’s low-resolution “physical” predictions do not.18

14The integration measure is written [dφ]Γ instead of [dφΓ] because the latter notation would be technically incorrect
– because the variables φΓ(x) are not all independent of each other (section 5).

15In this case, the zero-momentum part must be excluded from [dφ̃]Γ.
16In the infinite-volume limit, the components of p become continuous variables.
17Even if Γ is the largest sphere that can be inscribed in the Brillouin zone, the difference between

Γ and the full Brillouin zone is still significant. Define ρ(d) be the d-dimensional version of the ratio
(volume of inscribed sphere)/(volume of cube). Then ρ(d) = π

2nρ(d− 2) with ρ(1) = ρ(0) = 1, so ρ(d) is a monoton-
ically decreasing function of d for all integers d ≥ 1, and it approaches zero as d→∞. Examples: ρ(2) = π

4 ≈ 0.79,

ρ(3) = π
6 ≈ 0.52, ρ(4) = π2

32 ≈ 0.31, and ρ(5) = π2

60 ≈ 0.16.
18Models involving only scalar fields are just toy models, not meant to have realistic applications, but the concepts
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7 The momentum-shell renormalization group

Article 10142 introduced the idea of the renormalization group, expressed in
terms of observables. The renormalization group formalizes the question “how do
a model’s predictions vary with resolution?” This sections outlines a particular
way of implementing the renormalization group, and the rest of this article will
describe it in more detail.

Let Γ0 be a subset of the Brillouin zone, and let Γ1 ⊂ Γ0 be a slightly smaller
subset. Use the abbreviations

φ0 ≡ φΓ0
φ1 ≡ φΓ1

(8)

with φΓ(x) defined by equation (5). Two examples are worth keeping in mind:19

• Γ0 could be the spherical region with radius |p| = π/ε (the largest spherical
region that fits inside the Brillouin zone), and Γ1 could be a spherical region
with a slightly smaller radius.

• Γ0 could be the whole Brillouin zone, and Γ1 could be the smaller domain
defined by restricting each component of p to be something slightly less than
π/ε. In this case, Γ0 and Γ1 each have the shape of a d-dimensional cube.

In either case, let λ denote the ratio Λ0/Λ1 > 1, where Λk is the linear size of the
domain Γk. The ratio λ will be called the scale factor.

Start with the action

S[φ0] = εd
∑
x

((
∂φ0(x)

)2

2
+
∑
n

cnOn[φ0(x)],

)
(9)

which is equation (6) with Γ = Γ0. The goal is to quantify the degree to which the
various perturbations On tend to affect the model’s predictions at low resolution,
compared to what those predictions would be if the perturbations On were absent.

introduced in this article also apply to models that do have realistic applications.
19Special attention will be given to spherical domains, but most of the analysis in this article is valid for either

shape.
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The first step is to construct an action with the slightly lower UV cutoff but
that still gives the same low-energy predictions as the original model. This will be
done by (approximately) evaluating the path integral over the field variables φ̃(p)
with p in the shell20 – in Γ0 but not in Γ1. Suppose that the collection of Ons
is complete, in the sense that the result of integrating out the those high-energy
modes is equivalent to replacing the original action (9) with an effective action21

S1,ε[φ1] = εd
∑
x

(
Z(λ)

(
∂φ1(x)

)2

2
+
∑
n

c̃n(λ)On[φ1(x)]

)
(10)

with λ-dependent coefficients. For later convenience, the lattice spacing ε – which
has not changed (yet) – is indicated by a subscript in the notation for the effective
action. By construction, for any λ > 1, the actions (9) and (10) both produce the
same predictions for low-energy observables, which can be represented by insertions
of the form I[φ1]. Using (10) in place of (9) is equivalent to discarding observables
that involve higher energies, so this implements the first step in what article 10142
calls the irreversible renormalization group.22

The next step is to replace ε with λε so that the new UV cutoff in units of 1/(λε)
is numerically equal to the original UV cutoff in units of 1/ε. This replacement is
made in two places: in the factor εd that multiples the overall sum over points in
spacetime, and in the denominator of every (discretized) derivative with respect to
a spacetime coordinate. After this replacement, the effective action is

S1,λε[φ1] = (λε)d
∑
x

(
Z(λ)

λ2

(
∂φ1(x)

)2

2
+
∑
n

c̃n(λ)

λN∂
On[φ1(x)]

)
(11)

20In other contexts, the name momentum shell is also used for something different, namely for momenta satisfying
p2 = M2 for some specified mass scale M . In contrast, the momentum shell defined in this article has nonzero
thickness (a range of values of p2).

21Section 8 will describe this step in more detail.
22This implementation is called the momentum shell renormalization group (chapter 15 in Fradkin (2021),

and the online version Fradkin (2022)), because it involves integrating over the field variables in a thin shell in the
momentum (energy) domain.

11



cphysics.org article 22212 2023-02-10

where N∂ is the number of derivatives in the term On. This implements the second
step in what article 10142 calls the irreversible renormalization group.

The goal is to quantify the rate at which the effect of a given term On increases
or decreases as the UV cutoff is decreased. The “effect” is relative to the scale-
invariant model that we would have if all of the coefficients cn were zero. If the
coefficients of the (∂φ)2 terms in equations (9) and (11) were equal to each other,
then the λ-dependence of the other terms would quantify the tendency of their
effects to increase or decrease as the UV cutoff is decreased. We can equalize
the coefficients of the (∂φ)2 terms by rescaling the field variables in the effective
action. This doesn’t affect the model’s predictions because the field variables are
just integration variables in the path integral. In terms of the rescaled field variables

φ′1(x) ≡ φ1(x)× (Z(λ)λd−2)1/2, (12)

the effective action (11) is

S1,λε[φ1] = εd
∑
x

((
∂φ′1(x)

)2

2
+
∑
n

cn(λ)On[φ′1(x)]

)
(13)

with

cn(λ) ≡ λd(
Z(λ)λd−2

)Nφ/2 λN∂ c̃n(λ), (14)

where Nφ is the number of factors of φ in the term On. Now the coefficient of
the (∂φ)2 term is the same as in the original action (9), so we can quantify the
rate at which the effect of another term On increases or decreases as the cutoff
is decreased by comparing the λ-dependent coefficient cn(λ) to the corresponding
coefficient cn = cn(λ)

∣∣
λ=1

in the original action (9).
Since the goal is to understand the degree to which the various perturbations

On affect the model’s low-energy predictions, a more direct approach would be to
derive explicit expressions for all of the model’s low-energy predictions as functions
of the coefficients cn in the original action (9). That would be more direct, but the
calculations would be more difficult. The approach outlined here is easier.

12
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8 The effective action

Write
φ0(x) = φ1(x) + χ(x) (15)

with

χ(x) ≡ 1

Ld

∑
p∈ shell

eip·xφ̃(p) (16)

In words, χ(x) involves only momenta that are in Γ0 but not in Γ1. Then the path
integral (7) may also be written

〈I〉 =

∫
[dφ̃]0 exp

(
− S[φ1 + χ]

)
I[φ]∫

[dφ̃]0 exp
(
− S[φ1 + χ]

) [dφ̃]0 ≡ [dφ̃]Γ0
(17)

This way of writing the path integral is useful when the insertion I[φ] involves only
low momenta – that is, when

I[φ] = I[φ1]. (18)

In this case, the action S is only thing in the integrand (17) that depends on the
variables φ̃(p) with p /∈ Γ1, so (17) may be written

〈I〉 =

∫
[dφ̃]1 exp

(
− S1,ε[φ1]

)
I[φ1]∫

[dφ̃]1 exp
(
− S1,ε[φ1]

) (19)

where the effective action S1,ε[φ1] is defined by the result of doing the integrals
over the high-momentum parts:

exp
(
− S1,ε[φ1]

)
≡
∫

[dφ̃]shell exp
(
− S[φ1 + χ]

)
. (20)

The path integral in (19) is only over the variables φ̃(p) with p ∈ Γ1, and the path
integral in (20) is only over the variables φ̃(p) with p in the momentum shell (in Γ0

but not in Γ1).
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9 Separating the high- and low-momentum parts

As an example, the analysis from here through section 2623 starts with the action

S[φ0] = Sfree[φ0] + V [φ0] (21)

with24

Sfree[φ] ≡ εd
∑
x

((
∂φ(x)

)2

2
+ c2

φ2(x)

2

)

V [φ] ≡ εd
∑
x

c4
φ4(x)

4!
. (22)

To begin evaluating the right-hand side of (20), the write φ0 = φ1 +χ as before, and
expand the action in powers of χ. Writing Sfree in terms of the Fourier-transformed
variables φ̃ gives25

Sfree[φ0] =
1

Ld

∑
p∈Γ0

p2 + c2

2

∣∣φ̃(p)
∣∣2. (23)

Each term in the sum involves the variables φ̃ for only one value of |p|, so

Sfree[φ1 + χ] = Sfree[φ1] + Sfree[χ].

Use this to get
S[φ1 + χ] = S[φ1] + Sfree[χ] + δV [φ1, χ]

with

δV = εd
∑
x

c4 ×
(
φ3

1(x)χ(x)

3!
+
φ2

1(x)χ2(x)

2
+
φ1(x)χ3(x)

3!
+
χ4(x)

4!

)
. (24)

23Chapter 15 in Fradkin (2021) (or the online version Fradkin (2022)) shows some additional details.
24Section 28 will start with a more general action.
25In the euclidean action, p2 ≡ |p|2, with |p| defined as in (4). After Wick-rotating back to lorentzian spacetime,

the quantity p2 becomes the Lorentz-invariant product of p with itself, namely p2 = ηabpapb where ηab are the
components of the Minkowski metric. In both cases, the low-resolution condition may still be written as (4).

14
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To continue, use the abbreviation26

〈· · ·〉 ≡
∫

[dφ̃]shell exp
(
− Sfree[χ]

)
· · ·∫

[dφ̃]shell exp
(
− Sfree[χ]

) (25)

and define R[φ1] by

exp
(
−R[φ1]

)
∝
〈
exp

(
− δV [φ1, χ]

)〉
(26)

with proportionality factor chosen so that equation (20) gives

exp
(
− S1,ε[φ1]

)
= exp

(
− S[φ1]

)
exp

(
−R[φ1]

)
. (27)

This relationship can also be written

S1,ε[φ1] = S[φ1] +R[φ1]. (28)

If c4 is not zero, then c2 must be negative to approach a limit in which spacetime
is continuous or at least practically continuous.27 If |c2| is less than the minimum
value of p2 in the shell, then Sfree[χ] is still positive for all χ 6= 0 because p2 +c2 > 0
(equation (23)). For the rest of this article, suppose that |c2| satisfies this condition
so that the integrals in (25) are well-defined.

26In previous sections, the notation 〈· · ·〉 was used instead for the path integral over the field variables φ̃(p) with
p a simply-connected domain Γ, but here it is used only for the integral over the field variables φ̃(p) with p in the
shell. This new definition of 〈· · ·〉 is in effect for the rest of this article.

27Article 10142
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10 The tree-level approximation

If c4 = 0, then R would be independent of φ1, so

S1,ε[φ1] = S[φ1] + constant (if c4 = 0). (29)

If c4 > 0, then equation (29) is no longer true, but we can contemplate ignoring
R as an approximation. This is called the tree-level approximation.28 In that
approximation, the coefficients c̃n(λ) in the effective action (10) would be equal to
the coefficients cn in the original action (9), and Z(λ) would likewise be equal to
1, so equation (14) would imply

cn(λ) =
λd

λ(d−2)Nφ/2λN∂
cn (30)

in the generic case (13). Specialized to the case (21)-(22), this gives

c2(λ) = λ2c2 c4(λ) = λ4−dc4.

This approximation suggests that the φ2 term is a relevant perturbation (its im-
portance grows with increasing λ) and that the relevance of the φ4 term depends
on the number d of spacetime dimensions: relevant if d ≤ 3, irrelevant if d ≥ 5,
and the case d = 4 is too close to call.

The tree-level approximation might seem crude, but these conclusions turn out
to be accurate, with one caveat: they become accurate after we replace φ4 with
φ4 + γφ2 with a specially-tuned negative value of γ. Without this subtraction, the
φ4 term by itself is actually relevant for every d, effectively morphing into a φ2 term
at low energies when d ≥ 4. This is emphasized in article 10142, and it will be
derived in section 24. The required value of γ depends on the shape of the domain
Γ0 in the original action 9.

28The approximation is called tree-level because it doesn’t include contributions from loops (section 20).
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11 The small-coupling approximation

Expand the right-hand side of (26) in powers of δV to get

exp
(
−R[φ1]

)
∝
〈

1− δV +
1

2
(δV )2 +O

(
(δV )3

)〉
(31)

Take the log of both sides of (26) and use log(1 + x) = x− x2/2 +O(x3) to get

R[φ1] = constant− 〈δV 〉+

〈
(δV )2

〉
− 〈δV 〉2

2
+O

(
(δV )3

)
. (32)

Let δVn denote the part of δV with n factors of χ. The integral (25) is zero if “· · · ”
is the product of an odd number of χs, so

〈δV 〉 =
〈
δV2 + δV4

〉〈
(δV )2

〉
=
〈(
δV1)

2 +
(
δV2)

2 +
(
δV3)

2 +
(
δV4)

2 + 2(δV1) (δV3) + 2(δV2) (δV4)
〉
.

Section 12 will show more explicit expressions for each of these terms.

17
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12 Terms in the small-coupling approximation

Use the abbreviation

vn(x) ≡ 1

n!

(
∂

∂φ1(x)

)n
V [φ1] (33)

so that
δVn = εd

∑
x

χn(x)vn(x). (34)

Then

〈δV2〉 = εd
∑
x

〈
χ2(x)

〉
v2(x) (35)〈

(δV1)
2
〉

=
(
εd
)2
∑
x,y

〈
χ(x)χ(y)

〉
v1(x)v1(y) (36)

〈
(δV2)

2
〉

=
(
εd
)2
∑
x,y

〈
χ2(x)χ2(y)

〉
v2(x)v2(y) (37)

〈
(δV3)

2
〉

=
(
εd
)2
∑
x,y

〈
χ3(x)χ3(y)

〉
v3(x)v3(y) (38)

〈
(δV1)(δV3)

〉
=
(
εd
)2
∑
x,y

〈
χ(x)χ3(y)

〉
v1(x)v3(y) (39)

〈
(δV2)(δV4)

〉
=
(
εd
)2
∑
x,y

〈
χ2(x)χ4(y)

〉
v2(x)v4. (40)

Terms involving only δV4 can be ignored, because they are independent of φ1 and
so only contribute to the constant term in (32).
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13 The momentum shell correlation functions

To evaluate 〈χj(x)χk(y)〉, use equations (23) and (25) to get

〈χj(x)χk(y)〉 =

(
ε−d

∂

∂J(x)

)j (
ε−d

∂

∂J(y)

)k
Z[J ]

∣∣∣∣∣
J=0

(41)

with

Z[J ] ≡
∫

[dφ̃]shell exp
(
− Sfree[χ] + εd

∑
x χ(x)J(x)

)∫
[dφ̃]shell exp

(
− Sfree[χ]

) , (42)

where J(x) is a collection of independent variables, one for each lattice site x.
This works even though the quantities χ(x) are not all independent. To evaluate
the generating functional (42), use equation (16) to write χ(x) in terms of the
independent variables φ̃(p) and rewrite the exponent of (42) as

−Sfree[χ] + εd
∑
x

χ(x)J(x) =− 1

Ld

∑
p∈ shell

φ̃′(−p)p
2 + c2

2
φ̃′(p)

+
1

2
(εd)2

∑
x,y

J(x)G(x− y)J(y)

with

φ̃′(p) ≡ φ̃(p)− J̃(p)

p2 + c2
G(x− y) ≡ 1

Ld

∑
p∈ shell

eip·(x−y)

p2 + c2
. (43)

where J̃(p) is the Fourier transform of J(x). The shift φ̃(p)→ φ̃′(p) doesn’t affect
the integrals over φ̃(p), so the result is simply

Z[J ] = exp

(
1

2
(εd)2

∑
x,y

J(x)G(x− y)J(y)

)
. (44)

Thanks to equation (44), the correlation function (41) reduces to a sum of products
of the two-point functions G(x− y) = 〈χ(x)χ(y)〉 and G(0).

19



cphysics.org article 22212 2023-02-10

14 Connected terms

Section 11 showed that the quantity R[φ1] in equation (32) is a sum of terms with
the form 〈

(δVn1
)(δVn2

) · · · (δVnN )
〉

(45)

with δVn given by equation (34). Use definition of δVn to write (45) as29

(εd)N
∑

x1,x2,...,xN

〈
χn1(x1)χ

n2(x2) · · ·χnN (xN)
〉
vn1

(x1)vn2
(x2) · · · vnN (xN). (46)

Section 13 showed that the factor 〈· · ·〉 as a sum of products of two-point func-
tions. The structure of any one term in that sum can be represented as a graph
(points connected to each other by lines) in which each of the spacetime points xj is
drawn as a dot (also called a vertex in graph theory) and each two-point function
〈χ(xj)χ(xk)〉 is drawn as a line (also called an edge in graph theory) connecting
the points xj and xk. In the context of the quantity (46), each point x in the graph
is associated with a factor vn(x), and a sum over each argument x is implied.

A graph is called disconnected if its vertices can be separated into two nonempty
subsets such that no edge connects any vertex in one subset to any vertex in
the other. Otherwise, the graph is called connected. A term represented by
a (dis)connected graph is called a (dis)connected term. The quantity e−R[φ1]

(equation (31)) involves both connected and disconnected terms, but all of the dis-
connected terms cancel in the quantity R[φ1] (equation (32)). This implies that
the effective action S1,ε[φ1] defined in equation (20) can be calculated by evaluating
only the connected terms.

29Here, each xj is a point in spacetime, a collection of d coordinates: xj =
(
(xj)1, ..., (xj)d

)
.
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15 The momentum-shell two-point function

The infinite-volume limit of the two-point function (43) is

G(x− y) =

∫
p∈ shell

ddp

(2π)d
eip·(x−y)

p2 + c2
. (47)

This is clearly finite when x = y, because the domain of integration is finite.
This section evaluates this integral in a special case,30 namely the case of spherical
momentum domains Γ0 and Γ1 (section 7) with d = 3. The key message is that
G(x − y) is a decreasing function of |x − y|, at least when d ≥ 3. This will be
demonstrated here only in a special case, but the key message holds more generally.

Let Λn be the radius of the spherical domain Γn. Then the integral is only
over momenta with magnitudes in the range Λ1 < |p| < Λ0. The thin-shell
approximation will be used, so that Λ1 is only slightly different than the original
scale Λ0:

δΛ ≡ Λ0 − Λ1 � Λ0. (48)

To evaluate (47), write p · (x− y) = |p| |x− y| cos θ so that

G(x− y) =
Ωd−1

(2π)d

∫ Λ0

Λ1

|p|d−1 d|p|
∫ π

0

(sin θ)d−2 dθ
ei|p| |x−y| cos θ

|p|2 + c2

where Ωd is the “surface area” of the unit sphere in d-dimensional space.31 To
continue, specialize to d = 3 to make the θ-integral easy. Then

G(x− y) =
Ω2

(2π)3

∫ Λ0

Λ1

|p|2 d|p|
∫ 1

−1

d cos θ
ei|p| |x−y| cos θ

|p|2 + c2

=
1

(2π)2

∫ Λ0

Λ1

|p|2 d|p| ei|p| |x−y| − e−i|p| |x−y|(
|p|2 + c2

)(
i|p| |x− y|

) .
30If the domain of integration were infinite, then dimensional analysis could be used to deduce G(x−y) ∝ |x−y|2−d.

The fact that the domain of integration is finite makes the analysis more challenging.
31Examples: Ω1 = 2, Ω2 = 2π, Ω3 = 4π, and Ω4 = 2π2.
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If |c2| � Λ1, then

G(x− y) =
1

2π2

∫ Λ0

Λ1

d|p|
|p|

sin
(
|p| |x− y|

)
|x− y|

≈ 1

π2(Λ1 + Λ0)

∫ Λ0

Λ1

d|p|
sin
(
|p| |x− y|

)
|x− y|

=
cos
(
Λ1 |x− y|

)
− cos

(
Λ0 |x− y|

)
π2(Λ1 + Λ0) |x− y|2

.

The numerator is an oscillating function of |x − y| with magnitude ≤ 2, so the
denominator makes G(x − y) fall of as |x − y| increases. At x = y, its value is
G(0) ≈ (Λ0 − Λ1)/2π

2, so

G(x− y)

G(0)
∼

cos
(
Λ1 |x− y|

)
− cos

(
Λ0 |x− y|

)
(Λ2

0 − Λ2
1)|x− y|2

This becomes negligible compared to its maximum value when

(Λ2
0 − Λ2

1)|x− y|2 � 1.

This shows that G(x− y) is a decreasing function of |x− y|, as claimed.
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16 G(0) and
∑

yG
n(y)

For use in section 22, this section evaluates the quantities G(0) and32

εd
∑
y

Gn(x− y) (49)

for n = 1 and n = 2, using a spherical momentum shell as in section 15.
Use the abbreviation33,34

ωd ≡
Ωd

2(2π)d
. (50)

Using the thin-shell approximation (48), the quantity G(0) is

G(0) =

∫
shell

ddp

(2π)d
1

p2 + c2
≈ δΛ

Λ0

Λd
0

Λ2
0 + c2

2ωd (51)

if the domain of integration is a spherical shell of radius Λ0 and thickness δΛ.
To evaluate (49), start with equation (47) and use

εd
∑
y

eiy·
∑
p ∼ δ

(∑
p
)

where
∑
p is the sum of the n momenta occurring in the Fourier transforms of the

n factors G. The quantity (49) is zero when n = 1, because G(x− y) is an integral
over only nonzero momenta, where δ(p) is zero. When n = 2,

εd
∑
y

G2(x− y) =

∫
shell

ddp

(2π)d
1

(p2 + c2)2
≈ δΛ

Λ0

Λd
0

(Λ2
0 + c2)2

2ωd (52)

for a spherical shell.
32The quantities (49) will appear in section 17 (equation (54)).
33The extra factor of 2 is included in the denominator for later convenience. It is compensated by the factors of 2

in equations (51) and (52).
34Ωn is defined as in section 15.
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17 The no-derivatives approximation

Sections 11-14 showed that the effective action involves terms of the form(
εd
)2
∑
x,y

φj(x)Gn(x− y)φk(y)

with G(x− y) =
〈
χ(x)χ(y)

〉
. The function G(x− y) is nonzero even when x 6= y,

so R[φ1] may involve products of φ1s at widely separated points in spacetime.
The fact that φ1 involves only momenta in a finite domain (equations (5) and

(8)) implies that we could write

φ1(y) =

[
φ1(x) + a · ∂φ1(x) +

1

2
(a · ∂)2φ1(x) + · · ·

]
a=y−x

(53)

if the arguments x, y were continuous. This still works when spacetime is treated
as a lattice so that the derivatives ∂ are finite differences.35 We can use this to
write R[φ1] as a sum over x of products of φ1(x) and its derivatives, as in (9).

The rest of this article uses the no-derivatives approximation36

(
εd
)2
∑
x,y

φj(x)Gn(x− y)φk(y) ≈

(
εd
∑
x

φj+k(x)

)(
εd
∑
y

Gn(x− y)

)
, (54)

which discards all terms involving derivatives on the right-hand side of (53). This
has a chance of being a reasonable approximation when d ≥ 3, because then terms
with N∂ ≥ 2 have scaling dimension ∆ > d (except when Nφ = 2), and terms with
∆ > d are expected to be irrelevant at sufficiently low resolution.37,38,39 The real
reason for using this approximation here, though, is that it simplifies the analysis.

35Rota et al (1973), theorem 2
36This is also called the local potential approximation (LPA) (section 2.4.4 in Pelissetto and Vicari (2002),

section I.A in Hellwig et al (2015), section 3 in Codello et al (2018), and section 3 in Bagnuls and Bervillier (2001),
but the text below equation (2) in https://arxiv.org/abs/1307.3679 challenges this language).

37Section 1
38Heuristically, this is consistent with – but not necessarily implied by – the fact that G(x − y) approaches zero

for large |x− y| (section 15), at least when d ≥ 3.
39Derivative terms can contribute to (∂φ)2, but not in the one-loop approximation (section 20).
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18 The no-derivatives approximation: a consequence

In the no-derivatives approximation, all terms involving δV1 can be discarded.40 In
other words, the part of δV that is linear in χ can be discarded. To see why, start
with the derivative expansion(
εd
)2
∑
x,y

〈
χk(x)χ(y)

〉
vk(x)v1(y)

=
(
εd
)2
∑
x,y

〈
χk(x)χ(y)

〉
vk(x)

(
v1(x) + (y − x) · ∂v1(x) + · · ·

)
, (55)

and then use the no-derivatives approximation to get(
εd
)2
∑
x,y

〈
χk(x)χ(y)

〉
vk(x)v1(y) ≈

(
εd
)2
∑
x,y

〈
χk(x)χ(y)

〉
vk(x)v1(x).

The right-hand side is zero because εd
∑

y χ(y) would be the zero-momentum part
of χ(y), but χ(y) doesn’t have a zero-momentum part because its momenta are
restricted to the shell. The rest of this article uses the no-derivatives approximation,
so terms involving factors of δV1 will be discarded. In particular, the quantities
(36) and (39) will be discarded.

We can reach the same conclusion by applying the no-derivatives approximation
to the vk factor instead, which would give(

εd
)2
∑
x,y

〈
χk(x)χ(y)

〉
vk(x)v1(y) ≈

(
εd
)2
∑
x,y

〈
χk(x)χ(y)

〉
vk(y)v1(y).

This is zero because of equation (23). That equation implies that when “· · · ” is
a product of φ̃s, the quantity 〈· · ·〉 is zero unless the momenta sum to zero pair-
wise (meaning that each factor of φ̃(p) occurs together with a factor of φ̃(−p)).
The quantity εd

∑
x〈χk(x)χ(y)〉 doesn’t have any terms that satisfy this condi-

tion, because the individual momenta are all restricted to the shell, and the sum
εd
∑

x χ
k(x) involves only products of k φ̃s whose momenta already sum to zero.

40The quantity δV1 is defined in section 11.
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19 A warning

Section 18 showed that terms involving δV1 cannot contribute to the effective action
when the no-derivatives approximation is used. This section shows that terms
involving δV1 can contribute when the no-derivatives approximation is not used.
The word warning is in the title of this section because some authors discard terms
involving δV1 without explaining why – or when – this is allowed.

Factors of δV1 enter through quantities of the form(
εd
)2
∑
x,y

〈
χk(x)χ(y)

〉
vk(x)v1(y).

The correlation function factorizes into a product of the two-point factor 〈χ(x)χ(y)〉
with 〈χk−1(x)〉, so the sum over y involves only the combination

εd
∑
y

G(x− y)v1(y).

Let ṽ1(p) denote the Fourier transform of v1(y). Then

εd
∑
y

G(x− y)v1(y) = εd
∑
y

 1

Ld

∑
p∈ shell

eip·(x−y)

p2 + c2

( 1

Ld

∑
q

feiq·yṽ1(q)

)

=
1

Ld

∑
p∈ shell

eip·x ṽ1(p)

p2 + c2

This is zero if v1(y) ∝ φ1(y), because φ1(y) involves only momenta in Γ1 (not in
the shell),41 but it can be nonzero if v1(y) involves higher powers of φ1(y), because
the sum of three or more momenta in Γ1 can equal a momentum in the shell.

41This is the situation illustrated by figure 15.10 in Fradkin (2021).
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20 The loop expansion

Consider the quantities 〈(δV2)
2〉 and 〈(δV3)

2〉 shown in equations (37) and (38),
respectively, which involve the correlation functions

〈
χk(x)χk(y)

〉
with k = 2, 3.

According to the result derived in section 13, the quantity
〈
χ2(x)χ2(y)

〉
is a sum

of terms of these forms:〈
χ2(x)

〉 〈
χ2(y)

〉 〈
χ(x)χ(y)

〉2
.

In the graph representation described in section 14, the form shown on the left is
disconnected, so it does not contribute to the effective action. The form shown on
the right has two lines connecting the points x and y to each other, so it has one
loop. Similarly, the quantity

〈
χ3(x)χ3(y)

〉
is a sum of terms of these forms:42

〈
χ2(x)

〉 〈
χ2(y)

〉 〈
χ(x)χ(y)

〉 〈
χ(x)χ(y)

〉3
.

Graphically, the form shown on the left has a line connecting x to itself, a line
connecting y to itself, and a line connecting x to y, so the graph is connected with
two loops. The form shown on the right has three lines connecting x to y, so it is
again connected with two independent loops.43

The rest of this article uses the one-loop approximation, so terms with two or
more loops will be ignored. The expansion in the number of loops is related to
an expansion in powers of the coefficient(s) cn, so the one-loop approximation can
be viewed as a kind of small-coupling approximation.44 Section 21 will show that
when the no-derivatives approximation is used, the number of loops is equal to the
number of independent integrals over the momentum shell, so the loop expansion
can also be viewed as an expansion in powers of the ratio δΛ/Λ0 � 1.45

42Other cases are zero because
〈
χk
〉

= 0 when k is odd.
43The third loop is a composition of the first two loops, so it doesn’t count as an independent loop.
44The relationship is simplest when V has only a single coefficient, as in equation (22).
45Equation (48)
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21 The loop expansion with no derivatives

In the no-derivatives approximation,46 the quantities 〈(δV2)
2〉 and 〈(δV3)

2〉 shown
in equations (37) and (38) each become〈

(δVk)
2
〉
≈
(
εd
)2
∑
x,y

〈
χk(x)χk(y)

〉
vk(x)vk(x) (56)

After χ is written in terms of its momentum components φ̃(p) as in equation (16),
the quantity χk(y) is proportional to47

∑
p1,p2,...,pk

exp

(
iy ·
∑
k

pk

)
φ̃(p1)φ̃(p2) · · · φ̃(pk),

where the “integral” (sum) over each momentum pj is restricted to the shell. The
sum over y in equation (56) enforces the condition p1 + p2 + · · · + pk = 0, which
reduces the number of momentum integrals to k − 1. The momentum integrals
coming from the χk(x) factor are all eliminated by the fact that 〈φ̃(p1)φ̃(p2)〉 is
zero unless p1 + p2 = 0. Altogether, even though the number of factors of χ in (56)
is 2k, the number of independent momentum integrals is only k − 1, which is the
same as the number of loops.

This example illustrates the general fact that the no-derivatives approximation
can be arranged to make the number of independent momentum integrals equal to
the number of loops.48 Each momentum integral is over a shell of thickness δΛ� Λ0

(equation (48)), so the loop expansion can also be viewed as an expansion in powers
of the small ratio δΛ/Λ0.

49

46The lowest-order terms with derivatives are treated in Fradkin (2021), chapter 15 (and the online version Fradkin
(2022)).

47Here, each pj represents a point in the momentum domain, so it is a collection of d components: pj =
((pj)1, ..., (pj)d).

48They would automatically be equal if the quantities vk(x) were independent of x.
49The analysis still relies on a small-coupling approximation. Even if the initial action only has a single interaction
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22 The flow equations

In the no-derivatives and one-loop approximations, the quantities (36), (38), and
(39) may all be discarded. The quantity (32) then reduces to50,51

R[φ1] ≈ constant− 〈δV2〉+

〈
(δV2)

2
〉
− 〈δV2〉2

2

≈ constant− εd
∑
x

〈
χ2(x)

〉
v2(x)

+
(
εd
)2
∑
x,y

〈
χ2(x)χ2(y)

〉
−
〈
χ2(x)

〉 〈
χ2(y)

〉
2

(
v2(x)

)2

= constant− εd
∑
x

G(0)v2(x) +
(
εd
)2
∑
x,y

G2(x− y)
(
v2(x)

)2
.

The quantities G(0) and εd
∑

yG
2(y) were evaluated in section 16 for the case of a

spherical momentum shell. Use those results to get

R[φ1] ≈ constant + εd
∑
x

(
− v2(x)

Λ2
0 + c2

+

(
v2(x)

Λ2
0 + c2

)2
)
δΛ

Λ0
Λd

0 ωd.

Use the definition of v2(x) in equations (33) and (22) to get52

v2(x) = c4
φ2

1(x)

4
,

term (the φ4 term in equation (22)), integrating over a momentum shell generates higher powers of φ even in the
one-loop approximation. Also, the no-derivatives approximation relies on scaling dimensions to argue that most
terms with derivatives are a priori irrelevant (section 17), and the accuracy of that correspondence already depends
on a small-coupling approximation (section 15.6 in Fradkin (2021), mentioned in article 10142).

50The quantity (40) does not contribute because δV4 is a constant when V has the form shown in 9, so (40) does
not have a connected part (section 14).

51The last step accounts for a factor of 2 from the combinatorics of equations (41) and (44).
52One factor of 1/2 comes from the factor of 1/n! in equation (33), and the other comes from the factor of 1/4! in

equation (22).
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and write the coefficients cn as

c2 = g2Λ
2
0 c4 = g4Λ

4−d
0 (57)

to get53

R[φ1] ≈ constant + εd
∑
x

(
− g4

1 + g2
Λ2

0

φ2
1(x)

2
+

(
g4

1 + g2

)2

Λ4−d
0

φ4
1(x)

8

)
δΛ

Λ0
ωd.

Altogether, the effective action (28) is

S1,ε[φ1] = S[φ1] +R[φ1]

with

S[φ1] = εd
∑
x

((
∂φ1(x)

)2

2
+ c2

φ2
1(x)

2
+ c4

φ4
1(x)

4!

)

= εd
∑
x

((
∂φ1(x)

)2

2
+ g2Λ

2
0

φ2
1(x)

2
+ g4Λ

4−d
0

φ4
1(x)

4!

)
.

As in section 7, define λ ≡ Λ0/Λ1. As explained in that section, the last step in
this implementation of the renormalization group is to replace ε→ λε and express
the resulting effective action S1,λε[φ1] in terms of the rescaled field variables φ′1(x)
defined in equation (12). This gives54

S1,λε[φ1] ≈ εd
∑
x

((
∂φ′1(x)

)2

2
+ g2λ

2Λ2
0

(
φ′1(x)

)2

2
+ g4λ

4−dΛ4−d
0

(
φ′1(x)

)4

4!

)

+ εd
∑
x

(
− g4

1 + g2
λ2Λ2

0

(
φ′1(x)

)2

2
+

(
g4

1 + g2

)2

λ4−dΛ4−d
0

(
φ′1(x)

)4

8

)
δΛ

Λ0
ωd

+ constant.

53One factor of 1/2 from each term is included in the definition of ωd, equation (50).
54Factors of Λ0 are not replaced with Λ0/λ. Even though we chose Λ0 to be closely related to 1/ε in this example,

the quantities ε and Λ0 are independent of each other (section 7).
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The definition of λ implies δΛ/Λ0 = 1 − 1/λ, so comparing this to the original
action (21) gives these expressions for the λ-dependent coefficients gn(λ) in terms
of the original coefficients gn:

g2(λ) ≈ λ2 ×
(
g2 − ωd

g4

1 + g2

(
1− 1

λ

))
g4(λ) ≈ λ4−d ×

(
g4 + 3ωd

(
g4

1 + g2

)2(
1− 1

λ

))
.

This implies

λ
d

dλ
gn(λ) = βn

(
~g(λ)

)
(58)

with55

β2(~g ) ≈ 2g2 + ωd
g4

1 + g2

β4(~g ) ≈ (4− d)g4 − 3ωd

(
g4

1 + g2

)2

(59)

after neglecting terms of order (1 − 1/λ)2, which is valid in the thin-shell approx-
imation. These ordinary first-order differential equations for the functions gn(λ)
are called the renormalization group (RG) equations or flow equations,56

and the functions βn(~g) defined by (58) are called the beta functions.57 Sections
24-26 will explain the significance of this result.

55This assumes that the initial momentum domain Γ0 is spherical (section 7). Using a domain with a different
shape may modify the relative coefficients in (59), as explained in section 6.

56Section 27 explains that in the complete system of flow equations, the derivatives λ dg2k/dλ are nonzero for all
k ≥ 1, thanks to the terms of order (δV )k in equation (31).

57The name comes from the fact that it is conventionally abbreviated β. Sometimes the opposite sign convention
is used (Fradkin (2021), text below equation 16.20). Regardless of sign conventions, beware the name beta function
(and the notation β) is also used for related-but-different quantities that are typically only approximately equal to
the ones defined here – equal only up to some low order in a small-coupling expansion. One example is highlighted in
Montvay and Münster (1997), equation (1.268) and the text below it. In the math literature, the name beta function
is used for something completely different.
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23 Dimensionless coefficients

Factors of Λ0 that otherwise would have been present in the flow equations (58)-
(59) were eliminated by writing the coefficients cn in terms of the quantities gn that
were defined in equations (57). When considering more general perturbations with
Nφ factors of φ and N∂ derivatives, factors of Λ0 can be eliminated from the flow
equations by writing the coefficients cn as58

cn =
Λd

0

Λ
(d−2)Nφ/2
0 ΛN∂

0

gn. (60)

A system of units in which gn is dimensionless is natural59 in the sense that it
simplifies the form of the flow equations by eliminating factors of Λ0.

This system of units can also be defined by60 requiring the unperturbed action

εd
∑
x

(∂φ)2

2

to be dimensionless, in which case φ has the same units as Λ
(d−2)/2
0 . Requiring all

other terms in the action to be dimensionless then implies that cn may be written
as in (60) with dimensionless coefficients gn.

58This generalizes equations (57).
59Article 37431
60In this article, I chose to avoid any glib references to dimensional analysis in the derivation of equations (58)-(59).

Units are arbitrary (even if some are more natural than others), so any legitimate use of dimensional analysis in a
derivation clearly must involve more than just a natural choice of units. Many applications of dimensional analysis
in physics are simple enough that unpacking those implicit ingredients is relatively straightforward, but the subject
of this article is more intricate, so I chose to make those implicit ingredients explicit from the beginning.
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24 Significance: first-order approximation

To first order in the coefficients gn, the flow equations (58)-(59) are

λ
dg2

dλ
≈ 2g2 + ωdg4 +O(~g 2)

λ
dg4

dλ
≈ (4− d)g4 +O(~g 2). (61)

The solution of this system of equations is[
g2(λ)
g4(λ)

]
≈ λM

[
g2(1)
g4(1)

]
with

M =

[
2 ωd
0 4− d

]
.

Use the identities

λM
[
1
0

]
= λ2

[
1
0

]
λM
[
ωd/(2− d)

1

]
= λ4−d

[
ωd/(2− d)

1

]
to deduce that a φ2 term is a relevant perturbation for all d and that

φ4 − ωd
d− 2

φ2 (62)

is relevant if d = 3 and irrelevant if d ≥ 5. Including the g2
4 term in equations

(59) modifies the rate at which the effects of these terms increases or decreases
as a function of λ, but it doesn’t change these conclusions about (ir)relevance.61

This is all consistent with what we would expect based on scaling dimensions,62 as
reviewed in section 1.

61Section 25 will show that when d = 4, the perturbation corresponding to (62) is just barely irrelevant, thanks to
terms of order g2

4 that were neglected here.
62Thanks to this agreement, scaling dimensions are sometimes defined to be the eigenvalues of the linearized RG

flow (linearized about a fixed point), as in section 1.5 in McGreevy (2021). Section 2.1 in Codello et al (2018) extends
the definition beyond this approximation but acknowledges that those generalized scaling dimensions “take precise
values only in the vicinity of a fixed point of the RG flow.”
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25 Significance: the almost-marginal case

To determine the effect of the φ4 term when d = 4, we need to include the g2
4 term

in equations (58)-(59). To second order in the coefficients gn, the flow equations
(58)-(59) are

λ
dg2

dλ
≈ 2g2 + (1− g2)ωdg4 +O(~g 3)

λ
dg4

dλ
≈ (4− d)g4 − 3ωdg

2
4 +O(~g 3). (63)

When d = 4, the solution of the second equation is

g4(λ) =
1

(log λ+ κ)3ωd

with an arbitrary constant κ. This is a decreasing function of λ, which suggests
that some combination of φ4 and φ2 should be an irrelevant perturbation. The
fact that equations (63) are nonlinear implies that the relative coefficient in this
combination must depend on the overall coefficient. Explicitly, if we choose

g2(1) =
−ωdg4(1)/2

1 + ωdg4(1)
,

then equations (63) with d = 4 imply

λ
d

dλ

[
g2

g4

]
= −3ωdg4

[
g2

g4

]
at λ = 1.

This shows that the effect of a perturbation

g4 ×
(
φ4 − ωd/2

1 + ωdg4
φ2

)
(64)

starts to decrease when λ starts to increase from its initial value λ = 1, indicating
that this perturbation is irrelevant when d = 4. When terms of order g2

4 are
neglected, the combination (64) becomes proportional to (62) (when d = 4).
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26 Significance: a hint of a nontrivial fixed point

When d = 3, equations (58)-(59) say that if g4 is initially zero, then it starts to
increase in proportion to λ. This eventually invalidates the small-g4 approximation,
so conclusions that we get by ignoring the nonlinear terms terms in equations (58)-
(59) cannot be quantitatively correct, but suppose for a moment that they were at
least qualitatively correct. When d = 3, a positive value of g4(λ) exists for which the
derivative of g4(λ) is zero according to equation (59),63 suggesting the existence of
a scale-invariant model with g4 > 0 when d = 3. This qualitative conclusion turns
out to be correct, and improved computational techniques can be used to obtain
quantitatively accurate results about this scale-invariant model,64 which is called
the Wilson-Fisher fixed point.65 It is one of the most well-studied examples of
a scale-invariant model in quantum field theory in d ≥ 3 dimensions, not including
models whose fields obey linear equations of motion.

In the context of quantum field theory, scale-invariant models are often called
fixed points. They are points in the space of possible models, and they are fixed
in the sense that they are invariant under the renormalization group flow.66

63Even if the φ4 term is the only nonzero term in (22) when λ = 1, other terms are generated in the effective action
when λ > 1, and that generates new terms in λ dg4/dλ. Those generated terms are of order O(g3

4) (article 79649),
so they are included in the “+O(~g 3)” bucket in equation (63).

64Kleinert and Schulte-Frohlinde (2001), starting in section 10.12, and Pelissetto and Vicari (2002), section 3
65The first two sections Liendo (2017) give a concise introduction.
66Article 10142
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27 Generation of higher-order terms

In section 11, the expansion in powers of δV was truncated at second order. If
we had included terms of order (δV )k with k ≥ 3, then we would have ended up
with nonzero beta functions β2k(~g ) for all k ≥ 3 in addition to the beta functions
shown in equations (59). The expressions for these beta functions would involve
only the coefficients g2 and g4, because these are the only terms included in the
original action (22), but the fact that the beta functions β2k are all nonzero says
that terms of order φ2k will be generated67 in the effective action for all k. Article
79649 will explore the consequences of these higher-order terms.

Sections 28-29 will derive the beta functions that will be used in that article,
starting with an action that already includes terms of all orders φ2k. Setting the
initial values of the coefficients c2k to zero for all k ≥ 3 gives the special case (22)
that was used in the preceding sections.

67Remember that the flow equations were derived here only for an infinitesimal shell δΛ/Λ0 � 1, so they only
describe the initial values of the derivatives λ dg2k/dλ.
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28 A more general family of actions

The preceding sections, starting with section 9, studied an action of the form68

S[φ] = εd
∑
x

((
∂φ0(x)

)2

2
+ v
(
φ0(x)

))
v(φ) ≡ c2

φ2

2
+ c4

φ4

4!

using both the no-derivatives and one-loop approximations. This section describes
an efficient way to handle the more general case

v(φ) ≡ c2
φ2

2
+ c4

φ4

4!
+ c6

φ6

6!
+ · · ·

using the same approximations.
Start with the definition of the effective action, equation (20), and expand the

quantity S[φ1 + χ] on the right-hand side in powers of χ. Section 18 showed that
in the no-derivatives approximation, the linear-in-χ term can be discarded. When
the no-derivatives and one-loop approximations are both used, the terms involving
χk with k ≥ 3 can also be discarded. To deduce this, we need to show two things.
First, we need to show that terms generated by the quadratic part cannot involve
more than one loop. Second, we need to show that that terms generated by the
higher-order-in-χ parts necessarily involve at least two loops.

Suppose that only the quadratic-in-χ part is retained in the exponent on the
right-hand side of (20) and that the exponential is then expanded in powers of χ.
Then all of the expectation values of products of χs involve only products of χ2(x)s
at different points. The disconnected terms cancel in the log, and the only way to
get a completely-connected term is to connect the points in a single loop. Example:

〈χ2(x)χ2(y)χ2(z)〉 ∝ 〈χ(x)χ(y)〉〈χ(y)χ(z)〉〈χ(z)χ(x)〉+ disconnected.

This demonstrates that terms generated by the quadratic part cannot involve more
than one loop.

68In the second equation (the definition of v(φ)), φ is a single real variable.
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Now suppose that the χk part were retained in the exponent on the right-
hand side of (20), for some k ≥ 3, and that the exponential is then expanded in
powers of χ. Then all of the expectation values to which that term contributes
would include a factor of χk(x). Section 13 showed that the expectation value may
be written as a sum of products of two-point correlation functions. In the no-
derivatives approximation, products with a factor of 〈χ(x)χ(y)〉 cannot contribute
unless both points x and y also occur in at least one other factor. In that case,
the only way to get a graph with only one loop is for each vertex to join exactly
two edges, but terms involving χk(x) join k edges. This demonstrates that terms
generated by the higher-order-in-χ parts necessarily involve at least two loops when
the no-derivatives approximation is used.

Altogether, this shows that when the no-derivatives and one-loop approxima-
tions are both used, equation (20) for the effective action reduces to

exp
(
− S1,ε[φ1]

)
= exp

(
− S[φ1]

)
exp

(
−R[φ1]

)
(65)

with

exp
(
−R[φ1]

)
≈
∫

[dφ̃]shell exp

(
−εd

∑
x

((
∂χ(x)

)2

2
+ v′′

(
φ1(x)

)χ2(x)

2

))
,

where v′′(φ) ≡ d2v/dφ2. In the thin-shell approximation with a spherical shell of
radius Λ0, we can use (∂χ)2 ≈ Λ2

0χ
2 to get

exp
(
−R[φ1]

)
≈
∫

[dφ̃]shell exp

(
−εd

∑
x

(
Λ2

0 + v′′
(
φ1(x)

)) χ2(x)

2

)
.

To evaluate this, use equation (16) to write χ(x) in terms of the independent
integration variables φ̃(p), which gives

exp
(
−R[φ1]

)
≈
∫

[dφ̃]shell exp

− 1

Ld

∑
p,q ∈ shell

φ̃∗(p)M(p, q)φ̃(q)


38



cphysics.org article 22212 2023-02-10

with

M(p, q) ≡ 1

Ld
εd
∑
x

Λ2
0 + v′′

(
φ1(x)

)
2

ei(p−q)·x.

If we don’t take the infinite-volume limit, then the number momenta in the shell is
finite, so M(p, q) is an ordinary matrix with indices p and q. Thanks to the factor
of Ld in the denominator, the matrix M 2 has components

M 2(p, q) =
∑
`

M(p, `)M(`, q) =
1

Ld
εd
∑
x

(
Λ2

0 + v′′
(
φ1(x)

)
2

)2

ei(p−q)·x. (66)

More generally,

Mn(p, q) =
1

Ld
εd
∑
x

(
Λ2

0 + v′′
(
φ1(x)

)
2

)n

ei(p−q)·x. (67)

Similarly,

(logM)(p, q) =
1

Ld
εd
∑
x

log

(
Λ2

0 + v′′
(
φ1(x)

)
2

)
ei(p−q)·x. (68)

The identity M ∗(p, q) = M(q, p) implies that the matrix M is diagonalizable, with
real-valued eigenvalues, so we can use the identity∫

dϕR dϕI e
−(ϕR+iϕI)

∗(ϕR+iϕI)m =
π

m
∝ e− logm (69)

to get69,70

exp
(
−R[φ1]

)
≈ exp

(
−1

2
trace (logM) + constant

)
(70)

69To get this from (69), let m be an eigenvalue of M and let ϕ be the amplitude of the corresponding eigenvector,
and use the fact that the trace of a matrix is the sum of its eigenvalues.

70The factor 1/2 comes from the fact that the trace is over all momenta in the shell, but p and −p were already
counted separately in the identity (69) because φ̃(p) = ϕR(p) + iϕI(p) = φ̃∗(−p).
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with
trace (logM) =

∑
p∈ shell

(logM)(p, p).

Using equation (68) and the thin-shell approximation with a spherical shell of radius
Λ0 gives71

trace (logM) ≈ εd
∑
x

δΛ

Λ0
Λd

0 ωd log

(
Λ2

0 + v′′
(
φ1(x)

)
2

)
.

Altogether, the effective action is

S1,ε[φ1] ≈ εd
∑
x

((
∂φ1(x)

)2

2
+ veff

(
φ1(x)

))
with

veff(φ) ≡ v(φ) +
δΛ

Λ0
Λd

0 ωd log

(
Λ2

0 + v′′(φ)

2

)
+ constant. (71)

After rescaling ε and φ as described in section 7, the effective action becomes

S1,λε[φ1] ≈ εd
∑
x

((
∂φ1(x)

)2

2
+ λdveff

(
φ′1(x)/λ(d−2)/2

))
.

Equation (13) says that cn(λ) is the coefficient of (φ′1)
n/n! in the second term in

large parentheses, so

cn(λ) =

(
d

ds

)n
λdveff

(
s/λ(d−2)/2

)∣∣∣∣
s=0

= λd−(d−2)n/2

(
d

ds

)n
veff(s)

∣∣∣∣
s=0

. (72)

Section 29 uses this to derive RG flow equations for the dimensionless coefficients
gn that were defined in equation (60).

71The factor 1/2 from equation (70) is included in the definition of ωd, equation (50).
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29 Flow equations for the dimensionless coefficients

Use (72) to get

λ
d

dλ
cn(λ) ≈

(
d− (d− 2)n/2

)
cn(λ)

+ λd−(d−2)n/2

(
d

ds

)n
Λd

0 ωd log
(
Λ2

0 + v′′(s)
)∣∣∣∣
s=0

.

Now use λ ≈ 1 and equation (60) to get

λ
d

dλ
gn(λ) ≈

(
d− (d− 2)n/2

)
gn(λ)

+

(
d

ds

)n
Λ

(d−2)n/2
0 ωd log

(
Λ2

0 + v′′(s)
)∣∣∣∣
s=0

.

Equation (60) also implies

Λ2
0 + v′′(φ) = Λ2

0

(
1 +

∑
k≥0

g2(k+1)
(φ/Λ

(d−2)/2
0 )2k

(2k)!

)
,

so72

λ
d

dλ
gn(λ) ≈

(
d− (d− 2)n/2

)
gn(λ) +

(
d

ds

)n
ωd log

(
1 + u′′(s)

)∣∣∣∣
s=0

for all n ∈ {2, 4, 6, 8, ...}, with

u′′(s) =

(
d

ds

)2

u(s) u(s) ≡
∑
k≥1

g2k
s2k

(2k)!
.

Article 79649 analyzes these flow equations in detail.
72This agrees with equation (5.56) in Skinner (2016).
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