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Contour Integrals: Applications to
the Free Scalar Model

Randy S

Abstract As a technical supplement to articles 00980
and 30983, this article explains how contour integrals
may be used to estimate the large-distance behavior
of some functions that arise in the analysis of the free
scalar quantum field on a spatial lattice.
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1 Motivation

In quantum field theory (QFT), a relatively straightforward way to construct some
models without any mathematical ambiguity involves treating space as a very large
and very fine lattice. Articles 00980 and 30983 apply this approach to a simple
model involving only a free scalar field φ(x, t), where x = (x1, ..., xD) is a point in
D-dimensional space and t is the time coordinate.1 Many QFT textbooks explain
how to derive the result2

〈0|φ(x, t)φ(y, t)|0〉 ∼ e−m|x−y|,

where |0〉 is the vacuum state and m is the single-particle mass, but they usually
start in continuous space where the “operator” φ(x, t) is not really well-defined.
This article explains how to derive this result – and other related results – when
space is treated as a lattice, so that φ(x, t) is perfectly well-defined as an operator
on (a dense subset of) the Hilbert space.

The free scalar model can be defined directly in continuous space, as explained in
article 44563, but most QFT textbooks don’t use that approach because it doesn’t
generalize to nontrivial models. The lattice approach does, but most traditional
QFT textbooks don’t start with the lattice approach, either, because it’s messy
and artificial. The net result is that most traditional QFT textbooks don’t actually
define their models at all, which can make the whole subject seem ad-hoc. The
message in this article is that the same results may be derived in a legitimate way
from a clearly-defined model, so the subject really does have (or really can be given)
a solid foundation.3

1This article uses the same notation as in those articles, including p·x ≡∑n pnxn and x2 ≡ x·x and |x| ≡ √x · x,
but here the lattice has infinite size, so

∫
dDp · · · really is an integral (not a sum). The integral is over a Brillouin

zone, as explained in article 71852.
2Examples include page 27 in Peskin and Schroeder (1995) and page 35 in Itzykson and Zuber (1980).
3The message is that using a lattice is one way to define models in QFT, not that it’s the “right” way. It clearly

can’t be the “right” way, because lattice-based definitions are never unique: many models that differ in their details
at the lattice scale become indistinguishable from each other in the (near-)continuum limit. We do not yet know
the “right” way to define models in QFT (Tachikawa (2017)), not even if we only consider those models for which a
nontrivial strict continuum limit probably does exist.
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2 The quantities of interest

When the free scalar model is defined on a spatial lattice, as in articles 00980 and
30983, the infinite-volume limit of the equal-time two-point vacuum correlation
function is

〈0|φ(x, t)φ(y, t)|0〉 ∝
∫

B.Z.

dDp

(2π)D
eip·(x−y)

√
m2 + p̂2

(1)

where the integral is over each component of p from −π/ε to π/ε, where ε is the
distance between neighboring lattice sites, and the components of p̂ are

p̂n ≡
sin(pnε/2)

ε/2
.

The subscript “B.Z.” stands for Brillouin zone, a reminder that this is the domain
of integration (article 71852). The constant m is a positive real number (m > 0),
and each component of x or y is an integer multiple of the lattice spacing ε. More
generally, analysis of the free scalar model involves various functions of the form

fn(x− y) ≡
∫

B.Z.

dDp

(2π)D
eip·(x−y)

(
m2 + p̂2

)1/n
, (2)

where n is a nonzero integer (positive or negative). The goal is to deduce something
about how quickly this function approaches zero as the distance |x− y| increases.

The integral (2) is clearly well-defined, because the integrand and the domain of
integration are both finite, but it’s inconvenient as it stands because the quantity
p̂2 is not isotropic (symmetric under rotations) as a function of p. We only care
about the continuum limit ε → 0, in which this asymmetry disappears. In that
limit, the domain of integration becomes infinite and the integral is not absolutely
convergent.4 In fact, for x = y, the integral (2) does not remain finite in the
continuum limit.5 The remaining sections explain how to evaluate the continuum
limit of (2) when the distance |x− y| is held fixed at a finite nonzero value.

4An integral
∫
ds f(s) is called absolutely convergent if

∫
ds |f(s)| is finite.

5This is related to the fact that, in the continuum limit, φ(x, t) is not well-defined as an operator on the Hilbert
space.
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3 Strategy

To evaluate (2), the strategy will be to write it as a sum of two terms, one that
has rotation symmetry and one that goes to zero in the continuum limit. The
domain of integration in (2) is the D-dimensional analog of a cube: each of the D
integration variables goes from −π/ε to π/ε, independently of the others. Choose
a ε-independent constant λ such that

0 < λ� 1, (3)

and use the abbreviation

Λ ≡ λ

ε
.

Separate the domain of integration into two parts, one of which is defined by the
rotation-symmetric condition p2 < Λ2. The quantity (2) may be written

fn(x− y) =

∫

p2<Λ2

dDp

(2π)D
eip·(x−y)

(
m2 + p̂2

)1/n
+ remainder. (4)

In the first term, the condition (3) implies

p̂2 ≈ p2.

We can make this approximation arbitrarily good by making λ arbitrarily small,
as long as λ is nonzero and is held fixed when we take the limit ε→ 0. Using this
arbitrarily-good approximation, the first term in (4) becomes fn,Λ(x− y) with

fn,Λ(x) ≡
∫

p2<Λ2

dDp

(2π)D
eip·x

(
m2 + p2

)1/n
. (5)

Section 6 shows how to evaluate the continuum limit of this integral, and section
7 will show that the remainder in (4) goes to zero in the continuum limit.
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4 A quick review of contour integrals

Let C be a curve (also called a contour) in the complex plane, described by a
complex-valued function z(s) of a real variable s. If the curve z(s) is smooth
except at a finite number of points, then the contour integral of a function f(z)
along the curve C is defined by

∫

C

dz f(z) ≡
∫
ds

dz(s)

ds
f
(
z(s)

)
.

As an example, consider the curve defined by z(θ) ≡ eiθ for 0 ≤ θ < 2π, and let f
be the function f(z) ≡ 1/z. Then

∫

C

dz
1

z
=

∫ 2π

0

dθ ieiθ
1

eiθ
= i

∫ 2π

0

dθ = 2πi.

A function f(z) of a complex variable z is called holomorphic if its derivative
with respect to z,

df

dz
≡ lim

∆z→0

f(z + ∆z)− f(z)

∆z

is independent of the direction along which the limit is taken in the complex plane.
A function f(z) if holomorphic if and only if it is analytic,6 so these names can
both be used for the same class of functions. One of the most important facts about
contour integrals is Cauchy’s integral theorem, which says that if a function
f(z) is holomorphic in a simply-connected region R of the complex plane with
boundary ∂R, then the contour integral of f(z) around ∂R is zero:

∫

∂R

dz f(z) = 0 if f is holomorphic in R.

6Both are defined in Rao et al (2015), section 2.1, where their equivalence is also previewed.
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5 Where is an nth root analytic?

Let n be an integer with |n| ≥ 2. When z is allowed to be complex-valued, the
expression z1/n is ambiguous, because the condition wn = z is equivalent to the
condition (we2πi/n)n = z. One way to resolve the ambiguity is to require the phase
θ in z1/n = |z1/n| eiθ to satisfy

θ0 < θ ≤ θ0 +
2π

n
(6)

for some arbitrary fixed value of θ0. This makes z1/n unambiguous. With this
definition, z1/n is an analytic (equivalently, holomorphic) function of z everywhere
except along the half-line z = |z| einθ0. This half-line is called a branch cut. A
branch cut is a discontinuity that was introduced to eliminate what would have
otherwise been an ambiguity.

Now let ω be any real-valued positive constant. When p is allowed to be
complex-valued, the expression (p2 + ω2)1/n is again ambiguous, but we can re-
solve the ambiguity by requiring

(p2 + ω2)1/n =
∣∣(p2 + ω2)1/n

∣∣ eiθ

where θ0 satisfies (6) for some arbitrary fixed value of θ0. Then (p2 + ω2)1/n is an
analytic function of p everywhere except along the branch cut

p2 + ω2 =
∣∣p2 + ω2

∣∣ einθ0. (7)

Where in the complex p-plane is this branch cut located? As an example, suppose
we choose θ0 = −π/n, so that the equation for the branch cut becomes

p2 + ω2 = −
∣∣p2 + ω2

∣∣. (8)

This equation cannot be satisfied unless p2 is a negative real number, in which case
(8) says that its magnitude must satisfy |p2| − ω2 =

∣∣|p2| − ω2
∣∣. Altogether, the

branch cut (8) consists of those complex values of p whose real part is zero and
whose magnitude is ≥ ω.
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6 Evaluating the rotation-symmetric term

The function (5) is invariant under rotations, because a rotation of the argument
x can be cancelled by a rotation of the integration variable p in the exponential
factor. (Everything else about the integral is invariant under rotations of p.) To
evaluate the integral (5), rotate the coordinate system so that x has only one
nonzero component, say x = (x, 0, 0, ..., 0). Let p denote the first component of p,
and denote the remaining D− 1 components collectively by p. With this notation,
the integral (5) may be written

fn,Λ(x) ∝
∫

p2<Λ2

dD−1p gn,Λ(p, x) (9)

with

gn,Λ(p, x) ≡
∫

p2<Λ2−p2

dp eipx (p2 + ω2(p))1/n (10)

and

ω(p) ≡
√
m2 + p2.

For |n| ≥ 2, the large-|x| behavior of the function (10) can be determined using
Cauchy’s integral theorem. To do this, define (p2 + ω2(p))1/n as in section 5, with
the branch cut given by equation (8). Then the integrand of (10) is an analytic
function of p everywhere in the complex plane except along the two half-lines where
its real part is zero and its magnitude is ≥ ω(p). This implies

∫

C

dp eipx (p2 + ω2(p))1/n = 0 (11)

for any contour C that does not cross either of those half-lines. One example of
such a contour is shown in figure 1. We can take part of the contour to run along

the real axis from −
√

Λ2 − p2 to
√

Λ2 − p2, and we can take the return path to
be a semicircle with a notch along the imaginary axis to avoid the branch cut, as
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Figure 1 – Example of a contour inside which the integrand of (10) is an analytic function of
the complex variable p.

shown in the figure. If x > 0, then the return path should be in the upper half-
plane, where the imaginary part of p is positive. If x < 0, then the return path
should be in the lower half-plane, where the imaginary part of p is negative. Either
way, for any given x 6= 0, the value of the exponential factor eipx goes to zero as
e−|px| when |p| → ∞, so taking the continuum limit Λ→∞ reduces equation (11)
to ∫

R
dp eipx (p2 + ω2(p))1/n +

∫

notch

dp eipx (p2 + ω2(p))1/n = 0

where the first integral is along the whole real axis and the second integral is along
the notch that avoids the branch cut. The notch has two parts: one that descends
down from +i∞ (or ascends up from −i∞) along one face of the branch cut, and
another that ascends back toward +i∞ (or descends back toward −i∞) along the
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other face of the branch cut. These two parts are equal to7

±e±iπ/n
∫ ∞

ω(p)

dr e−ω(p)r(ω2(p)− r2)1/n,

respectively, so the preceding equation gives

∫

R
dp eipx (p2 + ω2(p))1/n ∝ (eiπ/n − e−iπ/n)

∫ ∞

ω(p)

dr e−rx(ω2(p)− r2)1/n.

Thanks to the exponentially-decreasing factor in the integrand, this is a manifestly
finite expression for the Λ→∞ limit of the function gn,Λ defined in (10). Use this
in (9) to get this expression for the continuum limit of (5):

lim
Λ→∞

fn,Λ(x) ∝ (eiπ/n − e−iπ/n)
∫
dD−1p

∫ ∞

ω(p)

dr e−r|x|(ω2(p)− r2)1/n. (12)

This function decreases asymptotically as ∼ e−m|x|. According to equation (1), the
special case n = −2 is the result that was quoted in section 1.

The contour-integration method used here has an implication that might be
surprising at first. If the factor of (m2 + p2)1/n in equation (5) were replaced with
a polynomial function of p, then the integrand would be analytic everywhere, so
the contributions from the two sides of the notch would cancel each other (or the
notch could be eliminated), and so the integral would be zero for all x 6= 0. Article
58590 introduces a different perspective in which this outcome isn’t surprising at
all.

7The factors of e±iπ/n come from choosing θ0 as in section 5.
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7 Evaluating the remainder

This section shows that if |x| > 0, then the remainder-term in equation (4) goes
to zero in the continuum limit, leaving only the rotation-symmetric term (5) that
was evaluated in section 6. The remainder in (4) is

Rn(x) =

∫

p2>Λ2, B.Z.

dDp

(2π)D
eip·x

(
m2 + p̂2

)1/n
(13)

where the integral is over all p in the Brillouin zone excluding those with p2 < Λ2.
Write the integral over p as an integral over the magnitude p ≡ |p| followed by
an integral over the direction of p. The lower limit of the integral over p is Λ.
The upper limit depends on the direction of p because the Brillouin zone is not
rotationally symmetric. Explicitly, the integral over the magnitude p is proportional
to ∫ Γ

Λ

dp eip|x| cos θ
(
m2 + p̂2

)1/n
, (14)

where the upper limit Γ depends on the direction of p. The quantity p̂2 may be
written more explicitly as

p̂2 =
∑

n

2− eipanε − e−ipanε
ε2

where each an is a direction-dependent factor between −1 and 1. This shows that
p̂2 is an analytic function of p with a magnitude that increases monotonically8 with

increasing |p|, so the factor
(
m2 + p̂2

)1/n
is an analytic function of p except along

a pair of branch cuts that we can take to be on the imaginary-p axis, as before.
Exactly how closely these branch cuts approach the origin depends on the direction
parameters an. Now, let C be a contour that runs along the real axis from Λ to
Γ, then traces out an arc with radius |p| = Γ in the complex p-plane (either in the

8To prove this, take the derivative with respect to p and recall that p is restricted to the Brillouin zone.
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Figure 2 – Example of a contour inside which the integrand of (14) is an analytic function of p.
In this example, the contour reaches all the way to the branch cut (which is as far as it’s allowed
to go), but that’s not necessary. Any excursion away from the real axis would be sufficient.

upper or lower half-plane, depending on the sign of cos θ in the exponent of (14)),
stops before it crosses the branch cut, then runs radially back toward the origin
until |p| = Λ, then traces out an arc with radius Λ until it meets the real axis again,
closing the contour. This is depicted in figure 2. The integrand of (14) is analytic
everywhere inside this contour, so Cauchy’s integral theorem gives

∫

C

dp eip|x| cos θ
(
m2 + p̂2

)1/n
= 0. (15)

In the continuum limit Λ → ∞, the parts of C that are off the real axis give a
vanishing contribution to the left-hand side of (15) (because the sign of the imag-
inary part was chosen to make the exponent become an exponentially decreasing
function of |p|), so equation (15) says that the contribution from the part of C that
is on the real axis – namely (14) – must also be zero in that limit. Altogether, this
shows that the remainder in equation (4) goes to zero in the continuum limit, as
claimed.
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