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Local Observables
in Quantum Field Theory

Randy S

Abstract Quantum field theory (QFT) is the foundation for
our current understanding of almost everything in nature except
gravity. QFT builds on the general principles of quantum theory
(article 03431) by adding the concept of a local observable –
an observable associated with a bounded region of spacetime.
This article introduces some of the general principles of QFT,
expressed in terms of local observables.
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1 The scope of this article

Historically, the subject(s) called quantum field theory (QFT) originated from
the desire to construct nontrivial quantum models respecting the symmetries of
flat spacetime, including Lorentz symmetry. Today, the name QFT is used with
several different overlapping meanings, and any definition that tries to cover all of
them is probably too generic to be useful. Instead of committing to a particular
definition of QFT, this article focuses on one of its key concepts: the concept of a
local observable.1

QFT does not require all observables to be local. A typical model includes some
observables that are not localized in any bounded region of spacetime, and a subject
called topological QFT considers models that don’t have any local observables
at all. Sometimes the mathematical structure of QFT is used in a different way,
with observables that are localized in bounded regions of an abstract manifold that
is not interpreted as spacetime.2 All of these things are interesting and important,
but this article doesn’t try to cover them. This article focuses only on observables
that are localized in bounded regions of spacetime. These are the most important
observables in most practical applications of QFT.

1In this article, an observable is called local if it is associated with a bounded region of spacetime, not necessarily
a single point. Sometimes people use the term local observable to mean an observable associated with a single point,
but that’s not how I’m using the term here. Section 6.1.1 in Halvorson and Mueger (2006) explains why associating
observables with individual points in a smooth spacetime can be problematic.

2A prominent example of this is the AdS/CFT correspondence (also called gauge/gravity duality), in
which observables are localized on the “boundary” of an asymptotically anti-de Sitter spacetime (Polchinski (2010),
Maldacena (2011), Sundrum (2012), Hubeny (2015), Kaplan (2016), Van Raamsdonk (2016)). That usage of QFT
has given us a relatively good understanding of quantum gravity in spacetimes satisfying that asymptotic condition,
but the real universe appears to be asymptotically de Sitter instead. That’s why the first sentence in this article’s
abstract says “...except gravity.” We do not yet have a good understanding of how to define quantum gravity in
asymptotically de Sitter spacetimes.
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2 Different usages of the name “QFT”

Physicists use the word theory to refer to anything from a general subject to an
individual model. Similarly, the expression quantum field theory may refer to the
general subject, or it may refer to an individual model.3

QFT is a refinement of quantum theory, in the sense that QFT adds to the list
of conditions that any good model should satisfy. Relativistic QFT is a further
refinement that adds a universal speed limit to the list of conditions. Sometimes
QFT is used as a synonym for relativistic QFT, but nonrelativistic QFT is also
an important subject.4 Sometimes the name relativistic QFT refers specifically to
QFT in flat spacetime, but QFT in curved spacetime is also an important
subject.5 This Venn diagram shows how the words are used in this article:

Quantum Theory

Quantum Field Theory (QFT)

Relativistic QFT

Nonrelativistic QFT

QFT in Flat Spacetime

QFT in Curved Spacetime

Most of the proposed axiomatic systems treat spacetime as a smooth manifold.
That excludes lattice QFT, and the name QFT is often used with that exclusive
connotation. In this article, QFT includes lattice QFT. Section 3 explains why.

3Example: “QED is a quantum field theory.”
4Section 15
5Section 14
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3 Emergent properties

Instead of studying individual models, we often study entire families of models
by promoting some of their shared properties to axioms and then exploring the
consequences of those axioms. People have tried to approach QFT this way, using
various sets of axioms.6 However, for many models of interest, some of the prop-
erties that we might like to promote to axioms are only approximately satisfied.
The imperfections may be undetectably small within the model’s intended range
of applications, but still – things called axioms are meant to be exact.

As an example, consider quantum electrodynamics (QED). The only known
nonperturbative7 definitions of QED treat spacetime (or at least space) as a dis-
crete array of points, typically a lattice. This way of defining a model is called
lattice QFT. The discretization is artificial,8 and that’s okay, because QED isn’t
meant to be a Theory of Everything. We can take the lattice scale (the distance
between neighboring points) to be much smaller than the finest scale resolved in
any experiment to which QED is meant to apply. Then properties associated with
continuous spacetime emerge at resolutions much coarser than the lattice scale.9

To accommodate important models like QED, this article distinguishes between
properties that should hold at all scales, and properties that are allowed to be
emergent – allowed to be violated near the lattice scale, as long as any violations
are imperceptable at much coarser resolutions.10 Causality principles (section 5)
and spacetime symmetries (section 9) are allowed to be emergent.

6Examples include the Wightman axioms (Streater and Wightman (1980)), algebraic QFT (Haag (1996)),
and what Schreiber (2008) calls functorial QFT (Monnier (2019)), although algebraic QFT can also be expressed as
a functor (Brunetti and Fredenhagen (2004)). This article’s approach is closest to algebraic QFT, which emphasizes
local observables. For perspectives, see Tachikawa (2017a), Tachikawa (2017b), Freed and Seiberg (2021), Dedushenko
(2022), Poland and Rastelli (2022).

7Most applications of QED rely on perturbation theory, the art of using small-parameter expansions, but
everything makes more sense (both mathematically and physically) when we start with a nonperturbative definition.

8The conventional concept of spacetime is expected to break down near the Planck scale, but in a more interesting
way (Bousso (2002)), nothing like a simplistic discretization.

9Many models that differ from each other at high resolution become indistinguishable at sufficiently low resolution,
a phenomenon called universality (McGreevy (2021) and article 10142).

10Witten (2017) contrast this with other usages of the word emergence.
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4 Local observables

In quantum theory, the word observable is typically used for something that
can be measured in a single measurement event.11 As explained in article 03431,
observables are represented by operators on a Hilbert space.12,13 To specify a model,
we need to specify its observables – at least we need to specify which elements of
the ∗-algebra represent which measurable things.

One way to do this is by assigning a set Ω(R) of observables (represented by
operators) to each region R of spacetime.14 We call them local observables if R
is bounded. Physically, observables in Ω(R) represent measurable things that are
localized within that region.15 Mathematically, all of the operators in all of the sets
Ω(R) are represented by operators on the same Hilbert space H.13

These sets should satisfy an obvious condition called isotony: if R1 ⊂ R2, then
Ω(R1) ⊂ Ω(R2). Any assignment that satisfies this condition is called a net of
observables.

The direction of the association is important. The time-slice principle (article
22871) says that if R3 is a neighborhood of one Cauchy surface16 and R4 is a
neighborhood of another Cauchy surface, then Ω(R3) = Ω(R4). That’s why we
assign a set Ω(R) of observables to each region R, instead of assigning a region to
each (set of) observable(s).

11The word observable is sometimes used more broadly, to include things like correlation functions whose measure-
ment requires multiple measurement events. That’s not how I’m using the word here.

12The word observable is used both for the measurable thing and for the operator that represents it.
13 In QFT, to be more careful, we should say that observables are represented by elements of a ∗-algebra (article

74088) and that we can choose how that ∗-algebra is represented by operators on a Hilbert space (section 8).
14This article uses the Heisenberg picture (article 22871).
15When we associate observables with specific regions of spacetime, we are relying of the fact that the concept of

an observable is primary in quantum theory: it does not depend on how the observable is measured. A measurement
is a physical event. With some idealization, we could say that a measurement occurs within a particular region of
space and within a particular interval of time, but that can only be an idealization because real measurements don’t
have well-defined boundaries. Even a quick measurement may be preceded by a long period of preparation and have
side-effects that propagate over great distances for many years into the future.

16 This article assumes that spacetime is globally hyperbolic, which roughly means that it admits a time
coordinate t such that a hypersurface of constant t is a valid Cauchy surface. Section 3 in Witten (2019) introduces
these concepts in detail.

6



cphysics.org article 21916 2024-12-23

5 Causality properties

Relativistic QFT combines the idea of QFT with the idea of relativity – that
influences cannot propagate faster than a limiting speed, the “speed of light.” In
relativistic QFT, the sets Ω(R) are supposed to have these causality properties,
at least as emergent properties:

• If every timelike and lightlike worldline that intersects R also intersects R1,
then all of the observables in Ω(R) are included in the algebra generated by
observables in Ω(R1). This is a local version of the time-slice principle. It
has a few different names (section 6).

• If R and R2 are not causally connected (if no timelike or lightlike worldline
intersects both of them), then all of the observables in Ω(R) commute with
all of the observables in Ω(R2). This principle has several different names,
including microcausality (section 6).

These conditions don’t assume that spacetime is flat. They apply in any globally
hyperbolic spacetime,16 whether flat or curved. The spacetime relationships in
these conditions are illustrated below, where the shaded area represents the union
of all timelike and lightlike worldlines through R:

domain-name-goes-here article 00000 DATE UNKNOWN

R

R1

R2
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6 Causality properties: some synonyms

The causality properties introduced in the previous section have various names.
Names that have been used for the local version of the time-slice property include:

• a local version of the time-slice property,17

• the existence of a causal dynamical law,18

• local primitive causality.19

Names that have been used for what section 5 called microcausality include:

• microcausality,20

• Einstein causality,21

• causality,22

• locality,23

• causal locality.24

Beware that the words causality and locality are used with other meanings, too. The
word locality is often used to describe the structure of the lagrangian in lagrangian
formulations of QFT, and more generally for the gluing property in one prominent
axiomatization of QFT.25 The same word is also sometimes used as a synonym for
Bell locality,26 a fanciful property that does not hold either in quantum field theory
or in the real world (article 70833).

17Brunetti and Fredenhagen (2004), definition 2.1
18Haag (1996) equations III.3.44 and III.1.10, and Verch (2001)
19Horuzhy (1990), section 1.2, axiom IVb
20Halvorson and Mueger (2006), section 2.1, assumption 2
21Halvorson and Mueger (2006), section 3. Don’t confuse this with Einstein locality.
22Horuzhy (1990), section 1.2, axiom III; Haag (1996), equation III.1.4
23Horuzhy (1990), section 1.2, axiom III; Araki (1999), section 4.1, axiom 3; Summers (2008), section 2, page 4
24https://ncatlab.org/nlab/show/causal+locality
25Monnier (2015), section 1, page 3; Freed (2014), section 2.3
26Weihs et al (1998)
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7 The impossibility of superluminal communication

If two regions of spacetime are not causally connected to each other, then events in
one region cannot influence events in the other region in any way that we know how
to predict. This is what “faster-than-light communication is impossible” means.
The microcausality principle that was introduced in section 5 is meant to enforce
this.27 This section reviews the reasoning and mentions an important caveat.

Consider two regions of spacetime that are not causally connected. Let X
be an observable localized in one of those regions, and let Y be an observable
localized in the other one. Microcausality says that X and Y commute with each
other. Suppose for simplicity that a measurement of X has only a countable list
of possible outcomes, represented by projection operators X1, X2, ..., and similarly
for Y . The fact that X and Y commute with each other implies28,29∑

n

ρ(Ym|Xn)ρ(Xn) = ρ(Ym)

for any state ρ(· · · ). This says that if no other measurements occur between the X
and Y measurements,30 then the distribution of Y -measurement outcomes is not
affected by whether X is measured.

We typically don’t know how to predict the outcomes of individual measurement
events. We can only predict the distribution of outcomes. Microcausality ensures
that if two regions are not causally connected, then the distribution of outcomes
in one region cannot be affected by the (non)occurrence of measurements in the
other region, at least if no other measurements occur in between. Article 41818
considers in-between measurements and uses a resulting “paradox” as a reminder
that measurement is a physical process that requires physical resources.31

27Related principles are reviewed in Summers (2008), Fewster (2016), and §3 in Halvorson and Mueger (2006).
28Articles 77228 and 03431 introduce this notation.
29Proof: The left-hand side may also be written

∑
n ρ(XnYmXn). If X commutes with Y , then this equals∑

n ρ(YmXn). Use
∑

nXn = 1 to finish the proof.
30An earlier version of this article failed to mention this important caveat. The online revision history shows when

the correction was made (https://cphysics.org/article/21916).
31The physical nature of measurement is a central theme in article 03431.
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8 Choosing a representation

Observables are normally represented by operators that operate on a Hilbert space,
but they can also be represented as elements of an abstract noncommutative C*-
algebra, which in turn can be represented as an algebra of operators on a Hilbert
space. This perspective, using two layers of representation, can be enlightening
when the same C*-algebra admits different Hilbert-space representations that are
not unitarily equivalent to each other.

The general principles of QFT can be organized into two groups: those that
refer only to the algebraic structure, and those that say something about which
Hilbert-space representations are physically reasonable. The second group includes
the requirement that the Hilbert space should be separable (articles 90771 and
03431). Other examples:

• The causality principles introduced in section 5 are in the first group: they
refer only to the algebraic structure.

• The principle introduced in section 10 is in the second group: it is a condition
on how the algebra should be represented on a Hilbert space.

This perspective is especially enlightening when considering QFT in curved space-
time. In a closed universe (a globally hyperbolic spacetime whose Cauchy surfaces
are compact), one Hilbert-space representation is naturally distinguished from all
the others. In contrast, in an open universe (whose Cauchy surfaces are not com-
pact), no one representation is naturally distinguished, so we must choose one based
on other criteria. This is reviewed by Witten (2021), section 2.4.

If we use a normalized positive linear functional to represent a state, as in
article 03431, then we don’t need an explicit Hilbert-space representation, but such
a representation is still implied through the GNS reconstruction theorem,32 so
conditions on the Hilbert-space representation still imply conditions on the state.

32Fewster and Rejzner (2019), section 2.3, theorem 10
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9 Symmetry

A unitary (or antiunitary) operator U on the Hilbert space is called a symmetry
if33

U−1Ω(R)U = Ω(RU)

for all regions R, where the regions RU are obtained from R by a smooth transfor-
mation of spacetime (a diffeomorphism).34

The study of relativistic QFT is dominated by QFT in flat spacetime, especially
by models that have Poincaré symmetry, which means that the transformations
R → RU preserve the Minkowski metric. In lattice QFT, such spacetime symme-
tries cannot be exact, but they can be emergent (section 3).

In a model with time translation symmetry, the operator that generates trans-
lations in time is the observable corresponding to the system’s total energy (article
22871). Similarly, in a model with symmetry under translations in a given spatial
direction, the operator that generates those translations is the observable corre-
sponding to that component of the system’s total momentum. The generator of
rotations in a given plane is likewise the observable corresponding to the system’s
total angular momentum in that plane.

Symmetries for which RU = R are called internal symmetries. They affect
individual observables but do not mix the sets Ω(R) with each other.

This article focuses on observables. In QFT, observables are typically expressed
in terms of auxiliary objects, like field operators, which are typically not observ-
ables by themselves. In that context, models often have symmetries that affect the
auxiliary objects but that don’t affect any observables.

33Harlow and Ooguri (2021) review a different (but related) way of defining symmetries in QFT.
34Article 93875
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10 The spectrum condition in flat spacetime

The idea that energy can be transferred among different parts of the system is
familiar.35 However, we also know from experience that if we continue extracting
energy from one part of the system, then eventually nothing is left in that location
but empty space, from which no further energy can be extracted. This is why the
concept of empty space makes sense.

In classical field theory, that kind of stability can be enforced by requiring the
energy density – the component T 00(x) of the stress-energy tensor (article 11475)
– to be nonnegative everywhere. In relativistic QFT, this is not possible.36 One
thing we can do instead is to impose the spectrum condition, which roughly says
that the total energy of a system has a finite lower bound. More precisely, it says
that when the algebra generated by the model’s observables is represented as an
algebra of operators on a Hilbert space,37 the quantity 〈ψ|H|ψ〉 should have a finite
lower bound among all unit state-vectors |ψ〉 in the Hilbert space, where H is the
hamiltonian, the generator of translations in time (article 22871). The spectrum
condition can also be called the positive-energy condition, because we can add
a constant term to the hamiltonian to shift the minimum energy to zero without
affecting any of the model’s predictions.38 The Hilbert space may or may not have
any state-vector that actually achieves the lower bound,39 but if it does, such a
state is called a vacuum state or a ground state.40

Some models admit more than one vacuum/ground state. The phenomenon
called spontaneous symmetry breaking (SSB) is an example. If |a〉 and |b〉 are
any two states having the lowest possible energy, then any superposition (linear

35This idea can be made more precise using the stress-energy tensor (section 14).
36Section 2 in Fewster (2005a) shows a concise and general proof.
37Fewster and Rejzner (2019) and Witten (2021) explain the reason for this qualification.
38This is true because we are only considering models in which the spacetime metric is a prescribed background

field (section 14), which is not influenced by the model’s quantum entities.
39Witten (2021)
40The name vacuum state is more common in relativistic quantum field theory, where the lowest-energy state

represents completely empty space. The name ground state is more common in nonrelativistic models of condensed
matter, where some minimal amount of matter is built into the model, even in the lowest-energy state.
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combination) of |a〉 and |b〉 also has that same energy. The names vacuum/ground
state are usually reserved for a special subset of these lowest-energy states, namely
those that cannot be mixed with each other by any observables that we could
feasibly measure in practice. As explained in article 03431, this condition selects a
special set of mutually orthogonal states and excludes their superpositions. These
special states can also be recognized as those that have the cluster property:41

the correlation between two localized clusters (products) of observables decreases
as the distance between the clusters increases.

The spectrum condition is expressed as a condition on the total energy, but in
relativistic QFT, it may imply a local stability condition like the one described at
the beginning of this section.42 Examples suggest that when the spectrum condition
is satisfied, the energy density integrated43 over any open region of spacetime can be
negative, but not arbitrarily negative.44 Ford (1978) highlights the importance of
this kind of stability for thermodynamics. Section 12 highlights another application:
it provides a local version of the concept of empty space,45 which in turn is the
foundation for the particle concept in not-necessarily-flat spacetime.

The spectrum condition also has other important implications in relativistic
QFT. It is one of the inputs to the spin-statistics theorem (the origin of the
Pauli exclusion principle)46 and to the CPT theorem (which relates to the exis-
tence/definition of antiparticles).47

41Weinberg (1996), section 19.1, pages 165-167; Haag (1996), equation III.3.19; Araki (1999), section 4.3, page 87;
Streater and Wightman (1980), equation 3-37

42Fewster (2005b)
43This means the T 00 component of the stress-energy tensor integrated with a suitable weighting function.
44 This has been shown for models of free fields, for models with conformal symmetry in two-dimensional spacetime,

and for one two-dimensional model without conformal symmetry. Reviews include Fewster (2012) and Cadamuro
(2019). Ford et al (2002) showed that the region must be open in the topological sense: if the energy density were
integrated only over a region of space, with no extent in time, then it would not have a lower bound.

45By the way, stability is one of the main reasons for studying supersymmetry. In nonperturbative formu-
lations of quantum gravity (article 03431 cites some references), supersymmetry seems to be important for the
emergence/stability of spacetime itself. This is mentioned at the end of section 2.1 in Banks (1998), below equation
(84) in Bigatti and Susskind (1997), and at the end of section 2 in Banks (2013).

46 Streater and Wightman (1980), Greenberg (1998), and section II.5.1 in Haag (1996)
47Witten (2015), section 5.8 in Weinberg (1995), and the references in footnote 46
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11 The Reeh-Schlieder property

Relativistic models have a property called the Reeh-Schlieder property, which
roughly says that for any open region R in spacetime, no matter how small,48 and
for almost any single state-vector |ψ〉, all other state-vectors can be generated from
|ψ〉 using only observables in Ω(R).49 The only requirement on |ψ〉 is that it has
bounded total energy-momentum in the sense defined in Witten (2018), section
2.3. A vacuum state is one example of such a state, so the Reeh-Schlieder property
implies that all states can be generated from a vacuum state using observables in
Ω(R).

Thanks to microcausality, this implies50 that |ψ〉 cannot be annihilated by any
observable localized in any bounded region of spacetime. For any measurement of
such an observable, all of its possible outcomes have a nonzero (possibly very small)
probability of occurring. That’s because each possible outcome is represented by a
projection operator P localized in that region, and P |ψ〉 6= 0 (implied by the Reeh-
Schlieder property) combined with P = P ∗P (true for any projection operator)
implies 〈ψ|P |ψ〉 6= 0.51

In flat spacetime, the Reeh-Schlieder property is a theorem that follows from
other relatively mild assumptions.52 A curved spacetime looks approximately flat
within a sufficiently small region, so something like the Reeh-Schlieder property
should also hold for relativistic models in curved spacetime.53 The Reeh-Schlieder
property does not necessarily apply in nonrelativistic models.

48Saying that R is open implies that it has finite extent in every dimension, so R can’t be a single point.
49More carefully: starting with |ψ〉, every state-vector can be arbitrarily well-approximated by applying operators

in the von Neumann algebra generated by Ω(R).
50Witten (2018), section 2.4
51If P is any projection operator in Ω(R), then the state P |ψ〉 is clearly annihilated by an operator in Ω(R),

namely by 1 − P . This doesn’t contradict the Reeh-Schlieder property. It just means that the state P |ψ〉 cannot
have strictly bounded total energy-momentum, even though it may be bounded for all practical purposes.

52Section 5.2 in Fewster and Rejzner (2020), section 2 in Witten (2018), section 2.3 in Halvorson and Mueger
(2006), theorem 4.14 in Araki (1999), section II.5.3 in Haag (1996), and theorem 1.3.2 in Baumgärtel (1995).

53Sanders (2009), Dappiaggi (2011)
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12 Particles

In QFT, observables are tied to spacetime, not to particles. A particle is a phemo-
menon, often a transient phenomenon. It is something that a model predicts, not
part of a model’s axioms.54 Particles are described using observables that detect
their presence in specified locations, just like how particle detectors work in the
real world. This will be illustrated in a separate article, using a simple example of
a relativistic QFT.

Stable particle species in flat spacetime are often characterized in terms of
irreducible representations of the Poincaré group, the group of symmetries of flat
spacetime.55 Given one state that corresponds to a single particle, all Poincaré
transforms of that state should represent the same kind of particle. Conversely,
given two single-particle states corresponding to two different particle species, those
states cannot be mixed with each other by Poincaré transforms. This way of
characterizing particle species is convenient when it works, but it doesn’t work in a
generic curved spacetime that doesn’t have any symmetries, and it doesn’t work for
unstable particles.56 Using observables representing localized particle-detectors to
characterize particles is not as pristine as using Poincaré symmetry, but it is more
flexible and is closer to the way particles are actually characterized in a laboratory.

Ideally, an operator representing a particle detector should have zero probabil-
ity of detecting anything in a vacuum state, because a vacuum state is supposed
to represent completely empty space. In relativistic QFT, that idealization can
be realized to an excellent approximation, but it can’t be realized exactly, for a
few reasons. First, the Reeh-Schlieder theorem (section 11) says that an observ-
able that is strictly localized in a bounded region of spacetime cannot annihilate

54Weinberg (1995) explains how to systematically construct a model that has a given particle content. That
doesn’t contradict the point I’m making here. Constructing a model so that it exhibits a desired phenomenon
doesn’t necessarily mean that we should think of that phenomenon as one of the theory’s axioms.

55Weinberg (1995), section 2.5
56It doesn’t work for unstable particles because even if |ψ〉 is a state corresponding to a single unstable particle at a

given time, the same state (in the Heisenberg picture) or its time-translations (in the Schrödinger picture) will involve
more than one particle after the unstable particle decays (or before it forms), so as far as the Poincaré-symmetry
approach is concerned, |ψ〉 isn’t really a single-particle state!
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the vacuum state, so an operator representing a particle-detector must either be
imperfectly localized (so that it can annihilate the vacuum state), or it must be
noisy (have a small probability of registering something even in the vacuum state).
Second, we can consider observables representing detectors that are accelerating,57

In QFT, detectors undergoing extreme acceleration have a significant probability of
detecting something even in a state where non-accelerating detectors do not. This
is called the Unruh effect. Third, the usual definition of the vacuum state itself
relies on special symmetries of flat spacetime (section 10). A generic curved space-
time has those symmetries only approximately, within sufficiently small regions.
We can still use a localized version of energy (the integral of T 00 over a bounded
region) to define a local concept of vacuum, and we can still use the localized detec-
tor concept to define particle, but then a generic time-dependent metric can lead
to spontaneous particle production.58 Hawking radiation from black holes is a
famous example of this phenomenon.59

This is the key message:

Particles are phenomena, not axioms.

Like most phenomena, particle does not have any definition that is perfectly natural
and unambiguous. That’s okay. Quantum field theory can (presumably)60 describe
phenomena like rivers, too, even though river also doesn’t have any definition that
is perfectly natural and unambiguous. The lack of a perfect definition may be a
nuisance when trying to prove theorems, but it is not a fundamental problem.

57I’m referring to acceleration in the absolute sense. An object resting on the surface of the earth is accelerating
in the absolute sense (it has a nonzero weight). An object in orbit is not accelerating in the absolute sense (it is
weightless).

58Su (2017), section 1.8
59This example is famous because it implies that black holes eventually evaporate, which in turn leads to important

clues (in the form of paradoxes) about how gravity and quantum physics fit together.
60https://physics.stackexchange.com/a/702712
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13 Nuclearity conditions

This is a topic that introductions to QFT rarely mention, even though it is part
of the foundation for statistical mechanics (article 23206). Precise mathematical
formulations of the idea are relatively technical, but the basic idea is simple:61 the
number of mutually orthogonal states available to a system with limited energy
and volume should be finite. One way to make this idea mathematically precise is
through a nuclearity condition, like the one proposed in Buchholz and Wichmann
(1986).62 According to page 326 in that paper, a condition like this is expected to
be satisfied “by any local quantum field theory admitting a particle interpretation
and having regular thermodynamical properties.”

Section V.5 in Haag (1996) reviews various formulations of this condition and
its relationship to local observables.

61Buchholz and Porrmann (1990), pages 237-238: “based on the heuristic idea that the number of [orthogonal]
states of fixed total energy and limited spatial extension should be finite. ... the mathematical description of this
idea is somewhat subtle and has led to different formulations.”

62This is reviewed concisely in section 4 of Fewster (2005b), and Fewster et al (2005) offers some clarifications.
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14 Background fields

In classical physics, as an approximation, we often consider models with back-
ground fields – things that influence, but are not influenced by, the model’s
dynamic entities. Background fields may be functions of space and time, but their
(space- and time-dependent) configuration is a prescribed input to the model, along
with other fixed inputs to the model like mass parameters and coupling constants.
The background-field approximation is often sufficient, and it tends to be easier
than treating those fields as dynamic entities.

The same idea can be used in QFT. The electromagnetic field is a prominent
example. In quantum electrodynamics, the electromagnetic field is a quantum field
that both influences and is influenced by the electron/positron field (and any other
charged matter fields we might want to include), but for some purposes we can
use a much easier model in which the electromagnetic field is a prescribed classical
background field instead.

In quantum theory, the spacetime metric – general relativity’s representation of
the “gravitational field” – is almost always treated as a classical background field,63

because (nonperturbative) quantum gravity is a much more challenging subject that
is not yet well-understood.64,65 Nonperturvatively, treating the spacetime metric as
an independent quantum field is probably not even the right thing to do.66 For
most practical applications, treating the gravitational field (the metric field) as a
classical background field is sufficient, and we can usually even take it to be flat (not
curved), as in most of the literature about QFT. Most of the general principles of
relativistic QFT, including the causality principles introduced in section 5, assume
a prescribed metric field.

63Witten (2021), Fewster and Verch (2015), Wald (2009), Parker and Toms (2009), Birrell and Davies (1982)
64In contrast to nonperturbative quantum gravity, treating a small perturbation of the spacetime metric as a

quantum field is relatively straightforward (Donoghue (1995)). This is usually sufficient because gravity is so weak.
65Some experiments (like Colella et al (1975)) have explored the effect of “gravity” on quantum systems, but they

are really only exploring the effect of absolute acceleration in flat spacetime.
66The holographic principle (reviewed in Bousso (2002)) is a strong clue that a different approach is required, as

emphasized in Jacobson (1995) and as demonstrated by nonperturbative formulations string theory (Lashkari et al
(2014) and references cited in article 03431).
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15 Not-necessarily-relativistic QFT

In applications where everything is moving very slowly compared to the limiting
speed, the existence of a limiting speed doesn’t matter. For such applications, we
can make the math easier by using a model that does not have any limiting speed.
Nonrelativistic QFT is QFT without a limiting speed.

To accommodate not-necessarily-relativistic models, the causality conditions
that were introduced in section 5 can be replaced by less-restrictive conditions. The
local time-slice property is replaced by the basic time-slice property (article 22871),
and microcausality is replaced by what can be called equal-time commutativity:
observables associated with different places at the same time should commute with
each other. These conditions assume that a preferred time coordinate has been
chosen, as usual in nonrelativistic models.67 These less-restrictive conditions allow
for the existence of a limiting speed, but they don’t require it.

Some models, like nonrelativistic quantum electrodynamics (NRQED), are nei-
ther strictly relativistic nor strictly nonrelativistic: the nonrelativistic approxima-
tion is built into the matter fields, but the quantum electromagnetic field prevents
the model from being strictly nonrelativistic. It can be reduced to a strictly non-
relativistic model by omitting the quantum electromagnetic field and keeping only
the matter fields with a static Coulomb interaction. This is good enough for much
of quantum chemistry (applications of quantum physics to chemistry).

67In relativistic QFT, these conditions hold with respect to any time coordinate – any coordinate t with the
property that every hypersurface of constant t is a spacelike Cauchy surface.
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