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Flat Space and Curved Space
Randy S

Abstract The familiar euclidean geometry of three-
dimensional space is an example of flat space. This
article introduces the concept of curved space, which is
an easy generalization after we change the way we think
about geometry in flat space.
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1 Introduction

Understanding curved space is easier after we change the way we think about
geometry in ordinary flat space:

Think of geometry as something that assigns
a length L(P ) to every path P .

We can recover everything else about the geometry from the function L(P ). We
don’t need to know in advance whether a path is straight or curved. The function
L(P ) is defined for all smooth paths, and it tells us which paths are straight:
Among all the paths from a to b, the one with the minimum length is the one we
call straight.

Sections 2 and 3 explain how the function L(P ) can be described concisely.
After we understand how to do this, the generalization from flat space to curved
space is easy (section 11).
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2 Three-dimensional flat space

A coordinate system is a way of labeling the points of space: each point of three-
dimensional space is labeled by a triple of real numbers, (x, y, z), varying smoothly
from one point to the next.1 Given a coordinate system, we can specify any path
using three functions

x(λ), y(λ), z(λ) (1)

whose derivatives are not all zero for any value of the parameter λ. Different
values of λ specify different points along the path, and the functions (1) give the
coordinates of each of those points. The path is called smooth if the functions
(1) have well-defined derivatives. A smooth path does not have any sharp kinks or
discontinuities.

To endow three-dimensional space with geometry, we can specify a line ele-
ment. The line element assigns a length L(P ) to every finite path P . For flat
space, the line element defines a function s(λ) by

ṡ 2 = ẋ2 + ẏ2 + ż2. (2)

An overhead dot denotes a derivative with respect to λ:

ẋ ≡ dx

dλ
. (3)

Then the quantity ∣∣s(λ2)− s(λ1)
∣∣ (4)

defines the length of the given path from λ1 to λ2. The next section explains why
this works.

1We don’t need to use “axes” to specify a coordinate system. Axes are for drawing graphs, not for formulating
the laws of geometry or physics.
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3 Why it works

To see that equation (2) defines the familiar geometry of flat space, recall the
definition of the derivative:

ẋ ≡ lim
∆λ→0

x(λ+ ∆λ)− x(λ)

∆λ
.

Intuitively, instead of taking the limit ∆λ → 0, we can think of ∆λ as a tiny but
nonzero real number. Then the derivative is approximated by a finite difference:

ẋ ≈ ∆x

∆λ

with
∆x ≡ x(λ+ ∆λ)− x(λ).

Use this in (2) to get

(∆s)2 ≈ (∆x)2 + (∆y)2 + (∆z)2. (5)

We recognize this as the Pythagorean theorem for the given tiny segment of the
path. We can subdivide the path into tiny segments, and then we can calculate the
length of the whole path by summing the lengths of all of these tiny segments, using
(5) for each one. The approach described in the previous section makes this idea
precise, using derivatives to capture the limit ∆λ → 0 so that the approximation
becomes exact.

The line element (2) is often written like this:2

ds2 = dx2 + dy2 + dz2. (6)

This abbreviation can be motivated by thinking of it as the “numerator” of (2),
after canceling the factors of dλ2 in the “denominator” as explained above.

2The prefix “d” stands for “differential.” Parentheses are implied, so that ds2 is an abbreviation for (ds)2.
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4 Generalizations

This can all be generalized in several ways:

• It can be generalized to D-dimensional space, for any integer D ≥ 1. This
generalization is easy: just use D coordinates instead of 3 coordinates. This
generalization will be introduced in section 9.

• It can be generalized to curved space. This generalization will be introduced
in section 11.

• It can be generalized to spacetime. Then some paths have a length and some
other paths have a duration. The line element specifies both, and it tells us
which paths have which property. This generalization is introduced in article
48968.

• We can combine all of these generalizations to describe N -dimensional curved
spacetime. This is introduced in article 48968.

But before we move on to those generalizations, let’s use the special case that was
introduced in section 2 to illustrate some important principles:

• The length of a path is independent of how the path is parameterized by λ.
This is explained in section 5.

• The same space (flat three-dimensional space in this case) can be described
using different coordinate systems, and the line element looks different in
different coordinate systems. This is explained in sections 6-8.
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5 Reparameterization invariance

The same path can be parameterized in different ways. As an example, consider
the path

x(λ) = λ

y(λ) = 3λ (7)

z(λ) = λ2

and the path

x(λ) = λ+ λ3

y(λ) = 3(λ+ λ3) (8)

z(λ) = (λ+ λ3)2.

These are the same path, because we can convert the first one to the second one
just by replacing λ with λ+ λ3, which is a monotonically increasing function of λ.

The fact that they both describe the same path should be obvious. If it doesn’t
seem obvious yet, remember that when we’re specifying a path, the parameter λ is
really just playing the role of an index (which we would often write as a subscript),
even though it’s continuous. When we replace λ with λ + λ3, we’re just using a
different way of indexing the same set of points in space.

Since the same path can be parameterized in different ways, we might wonder
if the length defined by equation (2) depends on how the path is parameterized. It
doesn’t. Intuitively, this is because the factors of (∆λ)2 cancel: see section 3. The
length defined by (2) only depends on the path itself, not on on how the path is
parameterized.

We do need to be careful when specifying the endpoints of the path in equation
(4). If we change how the path is parameterized, then we change which values of
the parameter correspond to the path’s endpoints. The statement that the length
of the path is independent of the parameterization assumes that the path itself –
including its endpoints – is fixed.
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6 Coordinate invariance

A coordinate system is a way of assigning a unique label to each point of space.
The length of a path does not depend on which coordinate system we use, but the
equation for the length of a path may look different in different coordinate systems.

For an example, consider two-dimensional space. Then equation (2) reduces to

ṡ2 = ẋ2 + ẏ2. (9)

Define a new coordinate system (X, Y ) by

X ≡ x/(1 + y2) Y ≡ y. (10)

We can re-arrange this to get

x = (1 + Y 2)X y = Y. (11)

The chain rule (which should be familiar from calculus) implies

ẋ = (1 + Y 2) Ẋ + 2XY Ẏ ẏ = Ẏ .

Substitute these into (9) to get

ṡ2 = (1 + Y 2)2 Ẋ2 + 4XY (1 + Y 2) Ẋ Ẏ +
(
1 + (2XY )2

)
Ẏ 2. (12)

Equation (12) still defines the geometry of flat space. It looks different than (9)
only because it’s expressed in a different coordinate system. Starting with equation
(12), we can recover (9) by using (10) to write (X, Y ) in terms of (x, y).

Consider the path defined by
(
x(λ), y(λ)

)
= (2λ, λ) for 0 ≤ λ ≤ 1. According

to equation (9), the length of this path is
√

5. According to equation (10), the
same path can be described in the other coordinate system as

(
X(λ), Y (λ)

)
=(

2λ/(1 + λ2), λ
)

for 0 ≤ λ ≤ 1. According to equation (12), the length of this path

is
√

5. The length of a given path is the same no matter what coordinate system
we use.
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7 Coordinates don’t always cover the whole space

A single coordinate system doesn’t need to cover the whole space. We can use
different (overlapping) coordinate systems to cover different parts of the space.
This section shows an example of a coordinate system that only covers part of the
space.

Start with two-dimensional flat space in the usual coordinate system:

ṡ2 = ẋ2 + ẏ2. (13)

For x > 0, define new coordinates X, Y by

x = eX y = Y. (14)

This new coordinate system only covers the half-space x > 0, because as X ranges
over the whole real line (−∞,∞), the value of x = eX ranges over the half-line
(0,∞). Substitute (14) into (13) to get

ṡ2 = e2X Ẋ2 + Ẏ 2. (15)

Or, in differential notation,

ds2 = e2X dX2 + dY 2.

This is the line element for the half-space x > 0 in the new coordinate system. The
new coordinates are unrestricted (−∞ < X < ∞ and −∞ < Y < ∞), but they
only cover half of the space.
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8 Example of a useful coordinate transformation

In the example shown in section 6, the relationship between (x, y) and (X, Y ) was
one-to-one. This ensures that, in either coordinate system, each point is labeled by
a unique pair of numbers, and each pair of numbers labels a unique point.

Sometimes we may want to use a “coordinate system” in which the relationship
between points and number-pairs is not one-to-one everywhere. If it is one-to-one
within some restricted region of space, then this is still a legimate coordinate system
within that region. An important example in two-dimensional space is the system
of polar coordinates defined by the relationships

x = X cosY

y = X sinY.

Writing r and φ instead of X and Y makes this look more familiar:

x = r cosφ

y = r sinφ.

If we consider only the region of space covered by r > 0 and 0 < φ < 2π, then this
is a one-to-one relationship, so we can use (r, φ) as a new coordinate system within
that region. Use the identities

ẋ = ṙ cosφ− φ̇ r sinφ

ẏ = ṙ sinφ+ φ̇ r cosφ

in equation (9) to get
ṡ2 = ṙ2 + r2φ̇2. (16)

Or, in diffential notation,
ds2 = dr2 + r2 dφ2.

This coordinate system is called polar coordinates. Any coordinate system in
which the length equation has the original form (9), or (19) in D-dimensional space,
is called Cartesian coordinates. Most coordinate systems, like the one in section
6, do not have special names.
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9 D-dimensional flat space

The generalization to D-dimensional space is easy. Each point of D-dimensional
space can be labeled by a D-tuple of real numbers, (x1, x2, ..., xD), each of which
varies smoothly from one point to the next.

Given a coordinate system, we can specify an arbitrary path using D functions

x1(λ), x2(λ), ..., xD(λ) (17)

whose derivatives are not all zero for any λ. As before, use an overhead dot to
denote a derivative with respect to λ:

ẋn ≡
dxn
dλ

. (18)

To define the geometry of flat D-dimensional space, we can use the line element

ṡ 2 = ẋ2
1 + ẋ2

2 + · · ·+ ẋ2
D (derivative notation)

ds 2 = dx2
1 + dx2

2 + · · ·+ dx2
D (differential notation)

(19)

This generalizes equations (2) and (6). Just like (4), the quantity∣∣s(λ2)− s(λ1)
∣∣ (20)

defines the length of the part of the path that goes from λ1 to λ2. In this way,
equation (19) implicitly specifies the geometry of D-dimensional flat space, by
specifying the length of every smooth path.
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10 General coordinate transformations

To describe a general coordinate transformation, let (x1, x2, ..., xD) denote the old
coordinates of a point, and let (X1, X2, ..., XD) denote the new coordinates of the
same point. We can write the old coordinates as functions of the new ones:

xn(X1, X2, ..., XD),

with one such function for each value of the index n ∈ {1, 2, ..., D}. We can
abbreviate this function as xn(X). The chain rule gives the identity

ẋn =
∑
j

∂xn
∂Xj

Ẋj.

As before, an overhead dot means an ordinary derivative with respect to λ. Sub-
stitute this into (19) to get

ṡ2 =
∑
j,k

gjk ẊjẊk (21)

with

gjk =
∑
n

∂xn
∂Xj

∂xn
∂Xk

. (22)

Equation (21) can also be written in differential notation like this:

ds2 =
∑
j,k

gjk dXj dXk.

The coefficients are functions of the coordinates X, but they don’t depend on the
derivatives Ẋ. In other words, the coefficients gjk may be different at different
points in space, but they don’t depend on which path we’re considering.

Equations (21)-(22) imply the existence of a coordinate system in which the
length equation has the simple form (19). As long as the coefficients have the form
(22) with one-to-one functions xn(X), the geometry defined by (21) is flat.
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11 Curved space

Inspired by (21), let’s write the length equation as

ṡ2 =
∑
j,k

gjk(x) ẋjẋk or ds2 =
∑
j,k

gjk(x) dxj dxk (23)

from now on. The coefficients gjk(x) are the components of the metric field, also
called the metric tensor or just the metric.

Depending on the coefficients gjk(x), equation (23) may or may not define the
geometry of flat space. It might be the geometry of flat space in a coordinate
system that makes it look more complicated (like equation (12)), or it might be
something truly different – something that cannot be reduced to equation (19) no
matter what coordinate system we use. The idea of curved space is that we can
still use equation (23) to define the length of every path as long as the right-hand
side is positive (not zero) whenever at least one of the ẋj is non-zero. In other
words, the right-hand side should be positive for every path. If the coefficients
gjk(x) satisfy this condition, then equation (23) defines a self-consistent geometry.3

The geometry that it defines may or may not be flat.4

This distinction between flat space and curved space refers to the intrinsic
geometry of the space, which assigns a length to every path. This concept of
curvature doesn’t refer to any embedding of the space into a higher-dimensional
flat space. General theorems about the existence of such embeddings have been
proven,5 but defining a manifold’s intrinsic geometry does not require any such
embedding.

3A smooth manifold equipped with such a metric is called a Riemannian manifold. Article 48968 considers
metrics that are not positive-definite, in which case the manifold is called pseudo-Riemannian.

4It may be (exactly) flat in some places and not in others. Don’t confuse this with the local flatness theorem
(article 48968), which says that the geometry always looks approximately flat in a sufficiently small neighborhood of
any given point.

5The Nash embedding theorem says that any Riemannian metric can be induced by embedding the manifold
into a flat space of sufficiently many dimensions (Lee (1997), chapter 5, pages 66-67).
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12 Most geometries are not flat

In the original special case (19), the components of the metric tensor are

gjk = δjk ≡

{
1 if j = k

0 otherwise.
(24)

To see that most geometries (23) are not flat, consider a metric tensor of the form

gjk(x) = δjk + ε hjk(x) +O(ε2) (25)

with |ε| � 1. The geometry might still be exactly flat even if gjk 6= δjk. However,
if it is flat, then we know from section 10 that the coefficients gjk can be written
in the form6

gjk(x) =
∑
n

∂Xn

∂xj

∂Xn

∂xk
(26)

for some set of functions Xn(x). Since we’re considering only slight deviations
from the obviously-flat case, we can consider a coordinate transformation that only
changes the coordinates slightly. For such a coordinate transformation, we can
write the functions Xn(x) as

Xn(x) = xn + ε zn(x)

with |ε| � 1. This gives

∂jXn ≡
∂Xn

∂xj
= δjn + ε ∂jzn,

and using this in (26) gives

gjk = δjk + ε hjk +O(ε2)

6The letters x and X are switched, but otherwise this is the same as equation (22).
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with
hjk = ∂jzk + ∂kzj (27)

Altogether, this shows that if the metric is flat, then the h in (25) can be written
in the form (27). If the h in (25) cannot be written in this form, then the metric
is not flat.

Given some set of functions hjk(x), how do we know if they can be written in
the form (27)? Here’s an easy test. For arbitrary functions zn, the quantities (27)
satisfy ∑

a,b,j,k

AajBbk ∂a∂bhjk = 0 (28)

whenever A and B are both antisymmetric, which means

Aaj = −Aja Bbk = −Bkb.

The identity (28) is a straightforward consequence of the elementary identities
∂a∂j = ∂j∂a and ∂b∂k = ∂k∂b. If we can find any antisymmetric A and B for which
hjk fails to satisfy (28), then the geometry with ε 6= 0 is not flat. The example in
the next section illustrates this.

By the way, the antisymmetrized combinations appearing in the condition (28)
are the components of the small-ε approximation to the curvature tensor. A
geometry is flat if and only if its curvature tensor is zero.
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13 Example of a non-flat space

Use the abbreviation
r2 ≡

∑
k

x2
k

and consider the example
gjk(x) = (1 + εr2)δjk. (29)

In other words,
hjk = r2δjk.

This gives
∂a∂bhjk = 2δabδjk.

Now, choose any two vectors v and w and take

Aaj = Baj = vawj − vjwa.

Then ∑
a,b,j,k

AajBbk ∂a∂bhjk = 4(v · v)(w · w)− 4(v · w)2, (30)

with v · w ≡
∑

k vkwk as usual. We can choose v and w so that v · w = 0 and
v · v = w · w = 1, in which case the quantity (30) is not zero. This proves that the
geometry defined by (29) is not flat if ε 6= 0.
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14 A metric tensor is not just a set of components

We can think of gab(x) as the components of the metric field, but a metric field
is not just a collection of components. A metric field defines a map from one set
to another, specifically from the set of world-lines smoothly parameterized by λ
to the set of functions s(λ) of λ. Both of these sets have coordinate-independent
definitions, so the metric field is also a coordinate-independent entity: it is a map
from one coordinate-independent set to another. The components gab(x) depend
on which coordinate system we use, but the map does not. In fact, the statement
that the map does not depend on which coordinate system we use tells us how to
transform the components gab(x) when switching from one coordinate system to
another. This was illustrated in sections 6-8 and 10.

Article 09894 explains how to define a metric field (and other tensor fields)
without using coordinates at all.
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15 The summation convention

The notation that was used in this article, using subscripts to distinguish the
different coordinates from each other, is sufficient for many purposes. For other
purposes, a different notation is more convenient. Instead of writing the coordinates
index as a subscript, we can write it as a superscript, like this:

(x1, x2, ..., xD).

We need to remember that when a coordinate is written as xa, the superscript is
an index, not an exponent.7 Partial derivatives with respect to the coordinates are
then abbreviated like this:

∂a ≡
∂

∂xa
.

A subscript is used for ∂a because xa is in the denominator, loosely speaking.
In the (Einstein) summation convention, a sum is implied whenever the

same index appears as both a superscript and subscript in the same term. Example:

df = dxa∂af

with an implied sum over a. This convention is convenient because the combination
dxa∂a (with as sum over a) is invariant under coordinate transformations: under a
coordinate transformation x → X, the factors of ∂X/∂x and ∂x/∂X cancel each
other. Writing an index as a subscript or superscript conveys which of these two
factors is involved in a coordinate transformation, so the positions of the indices
tell us when such cancellations will occur. Another example:

ds 2 = gab(x)dxa dxb, (31)

with implied sums over a, b. The fact that each index on the right-hand side occurs
both as a subscript and as a superscript tells us that the factors of ∂X/∂x and
∂x/∂X cancel each other in a coordinate transformation (section 10).

7Superscripts are also used for exponents, so we need to pay attention to the context.
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