
cphysics.org article 21794 2024-12-14

Symmetries of the Dirac Equation
in Flat Spacetime

Randy S

Abstract Article 08264 introduces the spin group, a special double cover of
the group of Lorentz transformations that may be expressed as compositions
of even numbers of reflections. This article introduces the Dirac equation
in flat spacetime. This is a differential equation whose group of symmetries
automatically includes the spin group. This article explores the pattern of
symmetries of the Dirac equation in d-dimensional flat spacetime, including
antlinear symmetries like CPT symmetry. The definition of symmetry used
here is motivated by quantum field theory, where the Dirac equation occurs
as the equation of motion for a free spinor field. This article also explores
symmetries of the Weyl equation, which is defined only when d is even. This is
another differential equation whose group of symmetries automatically includes
the spin group.
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1 Motivation

The simplest examples of models that satisfy the general principles of quantum
field theory (QFT) are models with no interactions. In these models, observables
are expressed in terms of fields that satisfy linear equations of motion. Such fields
are called free fields. The Dirac equation is one example. This article introduces
the the Dirac equation for the purpose of exploring some of its symmetries.

A field whose time-dependence is governed by the Dirac equation is called a
spinor field.1 In QFT, the components ψ1(x), ψ2(x), ... of the spinor field at each
point x in spacetime would be operators on a Hilbert space,2 and these operators
would not commute with each other. The Dirac equation can be studied without
that complication, though, because it is a linear differential equation: products
with more than one factor of the quantities ψk(x) do not occur in this equation.
This article treats the quantities ψk(x) as ordinary complex-valued functions of
spacetime instead of as non-commuting operators, because this is sufficient for
exploring the differential equation’s symmetries.

The QFT context is still important here, but only for motivation. QFT is the
motive for considering the Dirac equation at all, and it also motivates the definition
of symmetry that will be used in this article. Article 21916 reviews a definition of
symmetry in QFT that admits both linear and antilinear transformations.3 Both
types are important in QFT. Section 4 will introduce the definition of symmetry
used in this article, after section 2 reviews some background material to help relate
that definition to the QFT context that motivates it.

1In this article, the word spinor is a synonym for Dirac spinor, which many authors call a pinor in any dimension
and spinor only in odd dimensions. This article uses the name chiral spinor for what those authors would call a
spinor in even dimensions. Article 86175 gives more context about these different dialects.

2In mathematically legitimate formulations of QFT, operators aren’t really associated with individual points in
continuous spacetime (article 44563), but this article ignores that complication.

3Article 21916 describes the transformations more specifically as unitary and antiunitary, respectively. Article
90771 explains what this means.
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2 Automorphisms of an algebra of operators

In QFT, calling a transformation a symmetry typically implies two things about
the transformation. First, it respects locality: it respects the association between
observables and regions of spacetime, which is part of the data that defines a model.4

Second, it respects the algebraic structure: observables are represented by linear
operators an a Hilbert space, and a symmetry should be a ∗-automorphism of that
algebra of operators. This section reviews the definition of ∗-automorphism.5

Let A be an of operators on a Hilbert space that includes the adjoint A∗ of each
operator A ∈ A. An automorphism is an invertible map σ : A → A that satisfies
two conditions. First, it respects products:

σ(AB) = σ(A)σ(B) (1)

for all operators A,B. Second, it is either linear or antilinear. An automorphism
σ is called linear if it satisfies

σ(aA+ bB) = aσ(A) + bσ(B) (2)

for all operators A,B and all complex numbers a, b. If it satisfies

σ(aA+ bB) = a∗σ(A) + b∗σ(B) (3)

instead, then it’s called antilinear.6 This article uses both types of automorphism,
linear and antilinear. The word automorphism by itself usually means a linear
automorphism, but in this article it can mean either type. An automorphism is
called a ∗-automorphism if it also satisfies

σ(A∗) = σ(A)∗. (4)

We can think of a ∗-automorphism as a symmetry of the operator algebra itself,
ignoring the locality condition that is typically required in QFT.

4Article 21916
5Article 74088 gives a more complete review.
6Uhlmann (2016) is an introduction to antilinear operators.
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3 Two forms

Let A be the algebra generated by the field operators. The symmetries of interest
in this article are ∗-automorphisms σ of A whose effects on the field operators have
one of these forms:7

First form: σ(ψj(x)) =
∑

k
Mjkψk(x̄) (5)

Second form: σ(ψj(x)) =
∑

k
Mjkψ

∗
k(x̄), (6)

where ψ1(x), ψ2(x), ... are the components of the spinor field ψ(x), the coefficients
Mjk are complex numbers, x→ x̄ is an isometry, and σ is either linear or antilinear.
These equations may be written more cleanly using matrix notation: ψ(x) is the
column matrix with components ψk(x), and σ(ψ(x)) is the column matrix with
components σ(ψk(x)). With this notation, equations (5)-(6) are8

First form: σ(ψ(x)) = Mψ(x̄), (7)

Second form: σ(ψ(x)) = Mψ∗(x̄), (8)

where M is the square matrix with components Mjk. For most choices of the matrix
M , these σs are not even ∗-automorphisms, much less symmetries. For either of
these to be a ∗-automorphism, the matrix M must satisfy a consistency condition.
Section 4 will introduce the consistency condition.

7In lattice QFT, for each point x, each component ψk(x) of ψ(x) is an operator, and σ is applied to each of those
operators – separately for each x. That’s why I’m using the notation σ(ψ(x)) instead of σ(ψ)(x).

8Equation (8) illustrates the value of using the notation A∗ (instead of A†) to denote the adjoint of an operator
A. The field ψ(x) has multiple components, each one an operator ψk(x) with adjoint ψ∗k(x). The notation ψ†(x)
conventionally represents the transpose of the matrix whose components are ψ∗k(x), which is not what we want here.
We want the column matrix to remain a column matrix, but with each component replaced by its adjoint. That’s
what the notation ψ∗(x) represents. When the components of ψ(x) are treated as complex numbers (instead of
as operators), ψ∗(x) is the result of taking the complex conjugate of each component, again without taking the
transpose of the matrix.
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4 Symmetry: perspective and definition

In QFT, equations of motion may be viewed as a way of expressing the field opera-
tors at all times in terms of those at any one time.9 If the effect of a ∗-automorphism
on the field operators at one time has been specified, then its effect on the field
operators at all other times is implied by the equations of motion. That implied
effect may or may not be consistent with the effect asserted by equation (7) or
(8), because those equations assert an effect for all times.10 This article is about
when/how the matrix M can be chosen to make the implied effect consistent with
the asserted effect, when the equation of motion is the Dirac equation.

The Dirac equation has the form Dψ(x) = 0, where D is a differential operator11

that will be described later. If the field operators satisfy Dψ(x) = 0 and if σ
is a ∗-automorphism, then clearly σ(Dψ(x)) = 0. Together with the identity
σ(∂ψ(x)) = ∂σ(ψ(x)),12 this implies

Dσ(ψ(x)) = 0 if σ is linear, (9)

D∗σ(ψ(x)) = 0 if σ is antilinear, (10)

where D∗ is the complex conjugate of D. Use equations (7)-(8) in these to get

First form: DMψ(x̄) = 0 if σ is linear, (11)

D∗Mψ(x̄) = 0 if σ is antilinear. (12)

Second form: DMψ∗(x̄) = 0 if σ is linear, (13)

D∗Mψ∗(x̄) = 0 if σ is antilinear. (14)

This article will use the consistency conditions (11)-(14) to determine when/how
the matrix M can be chosen so that σ has a chance of being a symmetry of the

9Article 22871
10The time coordinate is part of the argument x.
11Here, differential operator means a combination of derivatives with respect to the spacetime coordinates, not an

operator on the Hilbert space. A differential operator may act on the field operators (because the field operators are
parameterized by the spacetime coordinates), which in turn act on the Hilbert space.

12Similarly, the adjoint of ∂ψk(x) is ∂ψ∗k(x). In contrast to the situation in article 20554, the derivatives ∂ here
are not (and don’t represent) operators on the Hilbert space.
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quantum model. These consistency conditions might not guarantee that σ satisfies
the definition of symmetry in article 21916, because they don’t address what σ does
to products of field operators, and they might not respect the spectrum condition,13

but for the sake of being concise, the remaining sections use the word symmetry to
mean any map of the form (7) or (8) that satisfies one of the consistency conditions
(9) or (10), shown more explicitly in (11)-(14). We can think of this roughly14 as a
necessary (but not sufficient) condition for σ to be a symmetry of the full quantum
model.

This way of using the word symmetry is also suggested by treating the com-
ponents ψk(x) of ψ(x) as ordinary complex-valued functions of x instead of as
operators on a Hilbert space (section 1). Then we can think of σ as a map from the
space of x-dependent spinors to itself, and we can call σ a symmetry of the Dirac
equation if applying σ to any solution of the Dirac equation always gives another
solution of the Dirac equation. The resulting condition on M is the same as the
condition (11). The QFT perspective described above motivates a generalization
of that picture, one that also considers maps of the second form (8) and that also
considers antilinear maps.

13Article 21916
14I’m using the word roughly to be cautious, because I’m not sure that every symmetry of the algebra of observables

of the free Dirac spinor quantum field can be lifted to a ∗-automorphism of the algebra of field operators.
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5 A clarification about linearity

The generic definition of linear transformation or linear map refers to a generic
vector space. In this article, two different vector spaces are in play, so whenever
the word linear is used, we need to pay attention to which vector space is being
referenced. In one of these vector spaces, linear transformations cannot mix the
components ψk(x) of the spinor field with their adjoints ψ∗k(x). In the other vector
space, they can.

Article 86175 introduced matrix representations of Clifford algebra, which give
the Clifford algebra a vector space W on which to act. At each point x in spacetime,
the spinor field ψ(x) is an element of W , with components ψk(x).15 A linear
transformation of this vector space cannot mix the components ψk(x) with their
adjoints ψ∗k(x).16

The other vector space is the algebra of operators generated by the field opera-
tors. Any linear combination of such operators with complex coefficients is another
such operator, so this is a vector space according to the generic definition. A linear
transformation of this vector space can mix the operators ψk(x) with their adjoints,
because their adjoints also belong to this vector space.

In this article, σ denotes a map from the algebra of operators to itself, so it
can still be linear even if it has the second form (8). A linear map cannot satisfy
σ(A) = A∗ for all operators A, because that would contradict (2), but it may satisfy
σ(A) = A∗ for a given collection of linearly independent operators A. Similarly,
a map σ can still be antilinear even if it has the first form (7). All combinations
occur in equations (11)-(14).

15This is a vector space in the generic sense, but a spinor field is not a vector field in the specific sense of a vector
field in spacetime (as defined in article 09894). The number of components of a spinor field is typically different from
the number of dimensions of spacetime.

16This article does not consider Majorana spinors. For a Majorana spinor, the adjoints ψ∗k(x) are linear combi-
nations of the ψk(x)s. The (non)existence of such representations of the Clifford algebra depends on the signature
of the spacetime metric (article 86175).

9



cphysics.org article 21794 2024-12-14

6 Notation and conventions

In this article, spacetime is flat and topologically trivial.17 The number of spacetime
dimensions will be denoted d. Lowercase boldface symbols will be used to denote
spacetime vectors – vectors that belong to the tangent space of the spacetime
manifold. The spacetime metric18 defines a scalar product g(a,b) between any two
vectors a,b. The components of a vector v in a basis e0, e1, e2, ..., ed−1 will be
denoted va. The Einstein summation convention will be used, so v = vaea has an
implied sum over the index a. The basis vectors ea are orthogonal to each other
(g(ea, eb) = 0 if a 6= b) and satisfy g(ea, ea) = ±1. In this article, the spacetime
metric has lorentzian signature: the sign of g(e0, e0) will be opposite to the sign of
the other g(ek, ek)s. The mostly-minus and mostly-plus signature conventions will
both be considered.

The Clifford algebra generated by spacetime vectors will be called the Clifford
algebra. Instead of working directly with the abstract Clifford algebra,19 this article
uses a fixed irreducible20 matrix representation. The square matrix representing a
vector v will be denoted γ(v). These matrices satisfy

γ(a)γ(b) + γ(b)γ(a) = 2g(a,b)I (15)

where I is the identity matrix. The matrix representing a basis vector ea will be
denoted γa ≡ γ(ea) and called a Dirac matrix. The matrix γ(v) representing any
vector v is a linear combination of Dirac matrices, with the vector’s components
as coefficients:

γ(v) = vaγa.

17For the rest of this article, the condition topologically trivial is implied whenever flat spacetime is mentioned.
Spinor fields exist only on spin manifolds, manifolds that satisfy a particular topological condition (Lawson and
Michelsohn (1989), theorem 2.1). All parallelizable manifolds – like topologically trivial flat spacetime – satisfy that
condition, and some non-parallelizable manifolds also satisfy it (page 87 in Lawson and Michelsohn (1989), and page
239 in Parker and Toms (2009)). Some flat manifolds don’t satisfy it (Lutowski and Putrycz (2015) and Dekimpe et
al (2006)), but topologically trivial flat manifolds do.

18Article 48968
19Articles 03910 and 08264 work directly with the abstract Clifford algebra.
20A representation is called irreducible if it doesn’t contain any smaller nontrivial representation.
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Equation (15) implies
γaγb + γbγa = 2gabI, (16)

where gab are the components of the metric tensor, defined by

gab ≡ g(ea, eb) =

{
±1 if a = b

0 otherwise.

The components gab of the inverse metric tensor, defined by

gabgbc = δac ≡

{
1 if a = c

0 otherwise,

may be used to define a raised-index version of each Dirac matrix:

γa ≡ gabγb. (17)

These satisfy

γaγ
b + γbγa = 2δbaI γaγb + γbγa = 2gabI. (18)

The abbreviations21

∂a ≡
∂

∂xa
γ∂ ≡ γa∂a

will also be used.

21The abbreviation /∂ = γa∂a is more common in the physics literature, but the notation γ∂ has advantages.
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7 The Dirac equation

Let γ be a representation of the Clifford algebra on a complex vector space of the
smallest possible dimension N . Each Dirac matrix γa is a matrix of size N × N .
In flat spacetime,22 the Dirac equation is either

(iγ∂ −m)ψ(x) = 0 (mostly-minus signature convention), (19)

or

(γ∂ +m)ψ(x) = 0 (mostly-plus signature convention), (20)

depending on which signature convention is used.23,24 The (Dirac) spinor field25

ψ(x) is a column matrix whose N components are functions of the spacetime coor-
dinates x. The term with no derivatives is often called a mass term.26 When the
mass term is zero, the Dirac equation reduces to the massless Dirac equation

γ∂ψ(x) = 0. (21)

22In not-necessarily-flat spacetime, the equations shown here must be generalized to account for the fact that the
spacetime metric – which is implicit in the definition of the Clifford algebra – may vary from one point to the next.

23The sign of the mass term is also a matter of convention. The convention used here seems to be the most common
one. Example: Peskin and Schroeder (1995), equation (3.31).

24Yet another matter of convention: some authors include a minus sign on the right-hand side of equation (15),
which reverses the correlation between the signature of the metric and the presence/absence of the factor of i in the
Dirac equation.

25The coordinate-free concept of a tensor field makes sense on any smooth manifold (article 09894). In contrast,
the coordinate-free concept of a spinor field depends on extra structure, namely a spin structure, that is not already
implicit in the general definition of a smooth manifold (footnote 17 in section 6, and definition 4.10 in Figueroa-
O’Farrill (2010)). The spin structure used implicitly in this article is the only one that topologically-trivial flat
spacetime admits (Genauer (2004), proposition 2), so leaving it implicit won’t cause any trouble.

26Section 8 will explain why.
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8 Why it’s called a mass term

To motivate the name mass term, multiply equations (19) and (20) by iγ∂+m and
γ∂ −m, respectively, and use the second identity in (18) to get

(−gab∂a∂b −m2)ψ(x) = 0 (mostly-minus signature convention),

(gab∂a∂b −m2)ψ(x) = 0 (mostly-plus signature convention).

This says that each component of the spinor field satisfies the same equation of
motion as a free scalar quantum field whose particles have mass m.27 The compo-
nents of the spinor field are not scalar fields, because the equation of motion (the
Dirac equation in this case) mixes them with each other, but m still turns out to
be the mass of a single particle in a quantum model that has the Dirac equation
as the field’s equation of motion.

27Article 30983
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9 Reflections in Clifford algebra

Every isometry28 of flat spacetime may be expressed as a composition of reflec-
tions.29 Reflections are especially easy to describe using Clifford algebra. Let r be
a vector with g(r, r) = ±1, and let x→ x̄ be a reflection along the direction r that
fixes (doesn’t move the points in) a hyperplane orthogonal to r. Using Clifford
algebra, the effect of the reflection on any vector v may be written30

v→ v̄ ≡ −rvr

g(r, r)
.

Multiply this equation by r and use r2 = g(r, r) to get

rv̄ = −vr,

which implies
γ(r)γ(v̄) = −γ(v)γ(r) (22)

in any matrix representation. For any differentiable function f , the quantity with
components ∂af ≡ gab∂bf is a vector field, so equation (22) implies

γ(r)(γ∂̄f) = −(γ∂f)γ(r). (23)

28An isometry is a transformation x→ x̄ for which gab(x̄)dx̄a dx̄b = gab(x)dxa dxb.
29Article 39430
30Article 08264
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10 Some symmetries of the massless Dirac equation

The massless Dirac equation will be considered first, because it is more symmetric31

than the Dirac equation with m 6= 0. This section shows that for any d, the massless
Dirac equation (21) has symmetries corresponding to all reflections, which implies
that it has symmetries corresponding to all isometries. Here, and in the rest of this
article, symmetry is defined as explained in section 4.

To show that it has symmetries corresponding to all reflections, let r be a vector
with g(r, r) = ±1, and let x → x̄ be a reflection along r that fixes a hyperplane
orthogonal to r. Consider the maps defined by

σ
(
ψ(x)

)
≡Mψ(x̄) σ linear (24)

with
M = ±γ(r). (25)

According to equation (23), this satisfies γ∂ M = −M γ∂̄, which implies

γ∂ Mψ(x̄) = −M γ∂̄ψ(x̄) (26)

with

∂̄a ≡
∂

∂x̄a
. (27)

The massless Dirac equation (21) may be written as γ∂̄ψ(x̄) = 0 just by relabelling
the coordinates, so equation (26) shows that the map defined by (24)-(25) satisfies
the condition (9) to be a symmetry of the massless Dirac equation (21).32

These symmetries are linear, not antilinear, even if the direction r is timelike.
The time-reflection symmetries that we normally consider in quantum theory are
antilinear instead. Antilinear symmetries involving time-reflection will be addressed
later, starting in section 18.

31This article considers only symmetries corresponding to ordinary spacetime isometries, ignoring other conformal
symmetries (article 38111), but the massless Dirac equation is still more symmetric (sections 17, 25, and 29).

32Recall footnotes 11-12 in section 4: the derivatives ∂ are not operators on the Hilbert space. The quantity
σ(∂ψ(x)) is equal to ∂σ(ψ(x)), not to ∂̄σ(ψ(x)). Similarly, the coordinates x are not affected by σ. The field
operators are parameterized by x, and the map σ may permute the field operators, but σ does not affect x.
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11 Symmetries in the spin group

Section 10 showed that the massless Dirac equation has symmetries of the form

σ
(
ψ(x)

)
= ±γ(r)ψ(x̄)

whenever x→ x̄ is a reflection along the direction r. The spin group33 consists of
transformations that may each be expressed as a composition of an even number
of these reflections. This section shows that the group of symmetries of the Dirac
equation still includes the spin group even when m 6= 0.34

Let x→ x̄ be an isometry given by the composition of two reflections along the
directions r1 and r2,

35 and consider the maps defined by

σ
(
ψ(x)

)
≡Mψ(x̄) σ linear (28)

with
M = ±γ(r1)γ(r2). (29)

According to equation (23), this satisfies γ∂ M = M γ∂̄, which implies

(iγ∂ −m)Mψ(x̄) = M (iγ∂̄ −m)ψ(x̄) (30)

with ∂̄ defined as before.36 The Dirac equation (19) may also be written

(iγ∂̄ −m)ψ(x̄) = 0 (31)

just by relabelling the coordinates, so (30) shows that the map defined by (28)-(29)
satisfies the condition (9) to be a symmetry of the Dirac equation for any value of
m.

33Article 08264
34This section uses one signature convention, equation (19). The analysis for the other signature convention,

equation (20), is similar.
35The directions r1 and r2 don’t need to be orthogonal to each other.
36Equation (27)
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12 Single-reflection symmetries when m 6= 0

Some transformations that were symmetries of the massless Dirac equation are no
longer symmetries when m 6= 0.37 If the analysis in section 10 were repeated with
m 6= 0, equation (26) would be replaced by

(iγ∂ −m)Mψ(x̄) = M(−iγ∂̄ −m)ψ(x̄).

Compared to the original Dirac equation (19), the derivative term on the right-
hand side has the wrong sign relative to the mass term. This sign comes from the
sign in equation (23). The sign didn’t make any difference when m = 0, but it does
when m 6= 0. As a result, the single-reflection map σ that was defined in section
10 is not a symmetry of the Dirac equation when m 6= 0.

Section 13 will show that when d is even, the Dirac equation with m 6= 0 actually
does have symmetries corresponding to all individual reflections, using a different
matrix M in place of (25) to cure the sign problem.

Section 14 will show that when d is odd, the Dirac equation (19) with m 6= 0
does not have any linear symmetries of the form (7) corresponding to individual
reflections.

Single-reflection symmetries of other types, equations (12)-(14), will be consid-
ered starting in section 18.

37This statement refers to symmetries that correspond to ordinary isometries of spacetime, ignoring other conformal
symmetries (footnote 31 in section 10).
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13 Another option when d is even

Let Γ for the product of all d Dirac matrices, normalized so that Γ2 = 1.38 When
d is even, we can satisfy the requirement Γ2 = 1 by writing39

Γ ≡

{
iγ0γ1γ2 · · · γd−1 when d = 4n (n denotes an integer),

γ0γ1γ2 · · · γd−1 when d = 4n+ 2.
(32)

When d is odd, the matrix Γ is not very useful: if γ is an irreducible representation
of the Clifford algebra, then Γ is proportional to the identity matrix when d is
odd.40

When d is even, Γ anticommutes with every Dirac matrix. We can use this to
fix the sign obstacle that we encountered in section 12. Define x̄ and r as in section
10, and consider the maps defined by

σ
(
ψ(x)

)
≡Mψ(x̄) σ linear

with
M = ±γ(r)Γ. (33)

According to equation (23), this satisfies γ∂ M = M γ∂̄, which can be used to
show that this σ is a symmetry of the Dirac equation for any m when d is even.41

Altogether, the Dirac equation has symmetries corresponding to all reflections, and
therefore to all isometries, when d is even.

38In the context of four-dimensional spacetime, the matrix Γ is traditionally denoted γ5 (or γ5).
39To confirm that this satisfies Γ2 = 1, use the fact that the bivectors Bk ≡ γ2kγ2k+1 all commute with each other

and that they all satisfy B2
k = −1 except B0, which satisfies B2

0 = 1. If the number of Bks with k > 0 is odd, then
we need the factor of i to get Γ2 = 1. Otherwise, we don’t.

40Article 86175
41A symmetry whose corresponding isometry is a composition of reflections along an odd number of spacelike

directions is often called parity, denoted P. When d is even, a symmetry that reflects along all d− 1 of the spatial
axes satisfies this definition. (Some authors might define parity using a reflection along all d−1 of the spatial axes for
any d, whether even or odd, but see footnote 51 in section 19.) When d even, composing the reflection-symmetries
described in this section for all d − 1 spatial axes gives M ∝ γ0, as in equation (3.126) in Peskin and Schroeder
(1995).

18
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14 Non-existence when d is odd

The option described in section 13 only works when d is even, because Γ commutes
with everything when d is odd.

In fact, when d is odd, the Dirac equation (19) does not have any linear symme-
tries of the form (7) corresponding to individual reflections when m 6= 0.42 To prove
this, consider a reflection along the spacelike43 direction, which we can take to be
e1 without loss of generality because rotation symmetry was already established in
section 11. Let x → x̄ be the isometry defined by this reflection, and consider a
map of the form

σ
(
ψ(x)

)
= Mψ(x̄) σ linear

for some matrix M . The condition (9) for this to be a symmetry of the Dirac
equation (19) is that the quantity

(iγ∂ −m)Mψ(x̄)

must be zero. The Dirac equation implies mψ(x̄) = iγ∂̄ψ(x̄), so the preceding
quantity may also be written

iγ∂ Mψ(x̄)−M iγ∂̄ ψ(x̄).

The field operators at a given time are all linearly independent, so this can be
zero only if M satisfies the condition γ∂ M = M γ∂̄, which means that M must
commute with every Dirac matrix except γ1 = γ(e1), and it must anticommute
with γ1. If such an M existed, then γ1M would anticommute with every Dirac
matrix, including γ1. When d is odd, this implies that M would also need to
anticommute with the product of all Dirac matrices, because the number of factors
in that product is odd. This is impossible, though, because the product of all d
Dirac matrices is proportional to the identity matrix I when d is odd,44 and a
nonzero matrix M cannot anticommute with I. This completes the proof.

42For d = 3, this is acknowledged in the text around equations (2.2)-(2.4) in Witten (2015) and in the first
paragraph of Biswas and Semenoff (2022).

43The analysis for a timelike direction is similar.
44Article 86175
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15 The Weyl equation

When the number d of spacetime dimensions is even, the (Dirac) spinor field ψ
may be separated into two parts – two chiral spinor fields – that are not mixed
with each other by the even subalgebra of the Clifford algebra,45 and the massless
Dirac equation separates into a pair of Weyl equations. The Weyl equation is
the equation of motion for a single free chiral spinor field.

To work this out explicitly, suppose that d is even, and define Γ as in section
13. The matrices

P± ≡
I ± Γ

2
(34)

are mutually orthogonal projectors:

P 2
± = P± P+P− = P−P+ = 0 P+ + P− = I.

This implies that the massless Dirac equation (21) is equivalent to the pair of
equations

γ(v)γ∂P+ψ = 0 γ(v)γ∂P−ψ = 0 (35)

for any vector v with v2 6= 0, so that the matrix γ(v) is invertible.46,47

The overall factor of γ(v) doesn’t affect the equivalence of the pair (35) with
equation (21), but it does accomplish something else. If W denotes the vector
space on which the matrix representation γ acts, then the projectors P± separate
W into two subspaces W+ and W− that each have half the number of dimensions
of W . Each Dirac matrix γa mixes these two subspaces with each other because
γaP± = P∓γ

a, but the combination γ(v)γ∂ does not, so including the factor of
γ(v) allows the first and second equations in (35) to be defined entirely within W+

and W−, respectively. In W+ or W−, the other components of P±ψ are nonexistent
instead of merely being zero. This perspective is usually implied when the name
Weyl equation is used.

45Article 86175
46The conventional choice is γ(v) = γ0 so that the matrix in the time-derivative term is the identity matrix, as in

Peskin and Schroeder (1995), equation (3.40).
47As long as v2 6= 0, we can eliminate the factor γ(v) by multiplying equations (35) by γ(v).
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16 Some symmetries of the Weyl equation

When applied to the Weyl equations (35), the reasoning that led to the symmetry
conditions (9)-(10) for the Dirac equation leads to these symmetry conditions for
the Weyl equations:

γ(v)γ∂ σ
(
P±ψ(x)

)
= 0 if σ is linear, (36)(

γ(v)γ∂
)∗
σ
(
P±ψ(x)

)
= 0 if σ is antilinear, (37)

with the understanding that σ should not mix the two subspaces W± with each
other.

Section 11 showed that the symmetry group of the Dirac equation includes the
spin group. This is still true for the Weyl equation, because the matrix M =
±γ(r1)γ(r2) commutes with the projections P±, so the maps defined by

σ
(
ψ(x)

)
= Mψ(x̄) (38)

don’t mix the two subspaces W± with each other. This shows that the symmetry
group of the Weyl equation includes the spin group.

The single-reflection maps defined by (25) cannot be symmetries of the Weyl
equation, because multiplication by γ(r) mixes the subspaces W± with each other:

γ(r)P±ψ = P∓γ(r)ψ.

The same is true for the other single-reflection maps defined by (33). If x→ x̄ is a
reflection along the direction r, then a map of the form (38) would need to use an
M satisfying γ∂M = ±Mγ∂̄ in order to be a symmetry, but this same condition
implies that M anticommutes with Γ. This implies that M mixes the subspaces
W± with each other, so the Weyl equation cannot have any linear symmetries of
the form (7) whose corresponding isometry consists of a single reflection. Single-
reflection symmetries of other types will be considered soon, starting in section
18.
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17 Summary of symmetries described so far

The preceding sections demonstrated the existence of some symmetries by explicit
construction and proved the non-existence of some others. Those (non)existence
results are summarized here in tables 1 and 2.

Dirac Weyl
m 6= 0 m = 0 m = 0

d even yes yes no
d odd no yes

Table 1 – Summary of when linear symmetries of the form σ(ψ(x)) = Mψ(x̄) exist when the
isometry x → x̄ is a single reflection. “Yes” means that such symmetries exist for all such
isometries, and “no” means that such a symmetry does not exist for any such isometry. The
three columns are for the Dirac equation with m 6= 0, the Dirac equation with m = 0, and the
Weyl equation, respectively.

Dirac Weyl
m 6= 0 m = 0 m = 0

d even yes yes yes
d odd yes yes

Table 2 – Summary of when linear symmetries of the form σ(ψ(x)) = Mψ(x̄) exist when the
isometry x→ x̄ is a composition of two reflections. “Yes” means that such symmetries exist for
all such isometries. These symmetries constitute the spin group (section 11).
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18 Other discrete symmetries

Section 4 mentioned four symmetry types:

• linear symmetries of the form (7),

• linear symmetries of the form (8),

• antilinear symmetries of the form (7),

• antilinear symmetries of the form (8).

All of the examples in the previous sections were of the first type: they were all
linear symmetries of the form (7). The rest of this article is mostly about the other
three types.

Symmetries of the other three types, and also symmetries of the first type
when the number of reflections along timelike or spacelike directions is odd, are
sometimes called discrete symmetries.48 In spite of that name, each of these
symmetries belongs to a continuum of symmetries (even if it isn’t connected to
the identity by any continuous path), because each one may be composed with
arbitrary transformations in the spin group.

48Peskin and Schroeder (1995), section 3.6
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19 CPT symmetry: introduction

The general principles of relativistic QFT in flat spacetime imply the existence of
an antilinear symmetry called CPT symmetry, which involves reflections along
one timelike direction and along an odd number of spacelike directions.49,50 This
general result is called the CPT theorem. The name CPT comes from the fact
that some models have other discrete symmetries traditionally called C, P, and
T whose composition gives CPT symmetry.51 CPT symmetry is more general,
though: its existence is guaranteed by the general principles of relativistic QFT in
flat spacetime, whereas the existence of other discrete symmetries is not.52

Sections 11 and 16 showed that the Dirac equation (for any m) and the Weyl
equation both have linear symmetries corresponding to any isometry x→ xPT that
is composed of one reflection along a timelike direction and one reflection along
a spacelike direction. Those symmetries belong to the spin group. In contrast,
the symmetries whose existence is promised by the CPT theorem are antilinear
symmetries. Section 20 will show that the Dirac and Weyl equations both have
such symmetries.

49Witten (2015)
50This clearly requires d ≥ 2, where d is the number of dimensions of spacetime.
51Sometimes other permutations of the letters are used, as in Streater and Wightman (1980). Witten (2015)

suggests calling it CRT symmetry instead, using R for (spatial) reflection instead of P for parity. Whatever we
call it, this symmetry is understood to involve a reflection along an odd number of spatial directions (not an even
number), regardless of whether the total number of dimensions of space is even or odd. The alternate name suggested
by Witten (2015) is meant to help remind people of this.

52Witten (2015), section 2.1.1, footnote 6
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20 CPT symmetry of the Dirac equation

Let x → xPT be the isometry defined by reflecting along the timelike direction e0

and the spacelike direction e1,
53 and write ∂PTa ≡ ∂/∂xaPT . The matrix M = ±γ0γ1

satisfies
γ∂ M = M γ∂PT (39)

which clearly implies54

(γ∂)∗M ∗ = M ∗ (γ∂PT )∗. (40)

Now let D denote the Dirac differential operator with either signature convention,
equation (19) or (20). Use (40) to get

D∗M ∗ψ∗(xPT ) = M ∗(DPT )∗ψ∗(xPT ) = M ∗(DPTψ(xPT )
)∗
. (41)

with DPT obtained from D by replacing ∂ with ∂PT . The original Dirac equation
Dψ(x) = 0 is equivalent to DPTψ(xPT ) = 0. Use this on the right-hand side of
(41) to deduce that the transformation σ defined by

σ
(
ψ(x)

)
= M ∗ψ∗(xPT ) σ antilinear (42)

satisfies the condition (10), so this is a symmetry of the Dirac equation for any m
and any d.

This symmetry is antilinear and involves reflections along one timelike direction
and an odd number (one) of spacelike directions, so this is the type of symmetry
promised by the CPT theorem. The composition of this symmetry with with any
linear symmetry in the spin group55 gives another symmetry of the type promised
by the CPT theorem.

53A similar analysis works for any pair of directions in which one is timelike and one is spacelike. They don’t need
to be orthogonal to each other.

54For any matrix, the asterisk denotes componentwise complex conjugation (or componentwise adjoint if the
components are operators on a Hilbert space, as in ψ∗). Remember that ∂∗ = ∂ (footnote 12 in section 4).

55Section 11
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21 CPT symmetry of the Weyl equation

Define M ≡ ±γ0γ1, as in section 20. For the Weyl equation, the condition for (42)
to be a symmetry is equation (37). To apply the map (42) in this context, we can
use either of two perspectives.

In one perspective, the two chiral subspaces W+ and W− that were defined in
section 15 are viewed as two complementary subspaces of a single Dirac spinor
space W . Then we can use (42) as it stands. Explicitly,

σ
(
P±ψ(x)

)
= P ∗±σ

(
ψ(x)

)
= P ∗±M

∗ψ∗(xPT ) = M ∗P ∗±ψ
∗(xPT ). (43)

The first step uses the fact that σ is defined to be antilinear. The second step uses
the effect of σ on ψ shown in (42). The third step uses the fact that M commutes
with P± because it’s a product of two Dirac matrices.

In the other perspective, the two chiral subspaces W+ and W− are viewed as
independent entities, with no reference to W . With this perspective, the map σ
should be defined only on the chiral spinors P+ψ or P−ψ, without requiring it to
be defined it on the Dirac spinor ψ. Explicitly, we can define σ by

σ
(
P±ψ(x)

)
≡M ∗(P±ψ(xPT )

)∗
σ antilinear, (44)

and then the end result is the same as in the previous perspective.
Either way,(
γ(v)γ∂

)∗
σ
(
P±ψ(x)

)
=
(
γ(v)γ∂

)∗(
MP±ψ(xPT )

)∗
(using (43) or (44))

=
(
γ(v)γ∂ MP±ψ(xPT )

)∗
=
(
M γ(v)γ∂PT P±ψ(xPT )

)∗
(using (39))

= 0 (using (35)).

This shows that σ satisfies the symmetry condition (37), and it doesn’t mix the
subspaces W± with each other, so this is a symmetry of the Weyl equation.
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22 (In)equivalence of matrix representations

The remaining sections consider linear symmetries of the form (8) and antilinear
symmetries of the form (7). Proofs of the existence or non-existence of a given
symmetry will still be representation-independent, as in the preceding sections, but
explicit constructions of symmetries that do exist will be given only for a specific
matrix representation, namely the one that will be described in section 23. This
section establishes some ingredients that will be used to prove existence or non-
existence of these symmetries without committing to any specific representation.

Two representations γ and γ′ are equivalent to each other if the condition

γ(v)M = Mγ′(v)

is satisfied for all vectors v by some invertible matrix M . The matrix M is said to
intertwine the two representations. This condition may also be written

M−1γ(v)M = γ′(v),

which says that one representation can be obtained from the other by a change of
basis of the vector space W on which the representation acts.56

Given one irreducible representation of the Clifford algebra, replacing each Dirac
matrix γa with (γa)∗ gives another one, and replacing each Dirac matrix γa with
−(γa)∗ gives another one. The rest of this section answers the question: which of
these representations are equivalent to each other? The answer depends on the
value of d modulo 4. The answer is simplest when d is even, so that case will
be treated first. When d is odd, the answer depends on whether d = 4n + 1 or
d = 4n + 3,57 and it also depends on whether the mostly-minus or mostly-plus
signature convention is used.

56This is a vector space over C. It should not be confused with the vector space to which the spacetime vectors v
belong, which is a vector space over R. These two vector spaces typically have different numbers of dimensions.

57n denotes an integer.
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If d is even, then all irreducible representations are equivalent to each other.58

This implies that when d is even, an invertible matrix M satisfying

γaM = M(γa)∗ (45)

must exist, and that another invertible matrix M satisfying

γaM = −M(γa)∗ (46)

must also exist. These results will be used later to prove the existence of some
symmetries when d is even.

When d is odd, exactly two inequivalent irreducible representations exist.58

When the mostly-minus signature convention is used, they are distinguished from
each other by the signs in59

γ0γ1γ2 · · · γd−1 =

{
±I if d = 4n+ 1,

±iI if d = 4n+ 3.
(47)

When the mostly-plus signature convention is used, the options become

γ0γ1γ2 · · · γd−1 =

{
±iI if d = 4n+ 1,

±I if d = 4n+ 3.
(48)

The absense or presence of the factor of i is determined by whether the product
of all Dirac matrices squares to +1 or −1, respectively. Changing the sign of
every Dirac matrix changes the sign of the products (47)-(48) because d is odd,
so two representations that differ in the signs of all of their Dirac matrices cannot
be equivalent to each other. Only two inequivalent representations exist, so the
representation whose Dirac matrices are γa must be equivalent either to the one
whose Dirac matrices are (γa)∗ or to the one whose Dirac matrices are −(γa)∗. The
signature convention options and the options d ∈ {4n+ 1, 4n+ 3} define these four
cases:

58Article 87696
59Shimizu (1985)
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• In the mostly-minus convention with d = 4n+1, replacing every Dirac matrix
by its complex conjugate doesn’t change the sign of the product (47),60 so
the condition (45) has a solution, but the condition (46) does not.61

• In the mostly-minus convention with d = 4n + 3, replacing every Dirac ma-
trix by its complex conjugate changes the sign of the product (47),62 so the
condition (46) has a solution, but the condition (45) does not.

• In the mostly-plus convention with d = 4n+ 1, replacing every Dirac matrix
by its complex conjugate changes the sign of the product (48), so the condition
(46) has a solution, but the condition (45) does not.

• In the mostly-plus convention with d = 4n+ 3, replacing every Dirac matrix
by its complex conjugate doesn’t change the sign of the product (48), so the
condition (45) has a solution, but the condition (46) does not.

These results will be used later to prove the existence of some symmetries, and the
non-existence of others, when d is odd.

When d is even, an irreducible representation of the Clifford algebra contains
two irreducible representations of Cliffeven, the even part of the Clifford algebra. An
element of the vector space on which an irreducible representation of Cliffeven acts
is a chiral spinor. The two irreducible representations of Cliffeven are distinguished
from each other by the signs in63

γ0γ1γ2 · · · γd−1 ∼

{
±iI if d = 4n,

±I if d = 4n+ 2,
(49)

60This follows from the fact that the right-hand side of (47) does not have a factor of i in this case.
61More explicitly: exactly two inequivalent irreducible representations exist, and flipping the sign of every Dirac

matrix gives an inequivalent representation, so exactly one of the two conditions (45)-(46) has a solution, namely the
one for which that replacement (either (45) or (46)) doesn’t change the sign in (47) (respectively (48) if the other
signature convention is used).

62This follows from the fact that the right-hand side of (47) does a factor of i in this case.
63Compare this to equation (32).
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where ∼ denotes equality within the context of one of the two chiral subspaces
W± that were defined in section 15. The signature convention doesn’t matter here,
because the even part of the Clifford algebra is the same in either convention.64

Reasoning like what that was used above for odd d may be used again here, now
for the options d ∈ {4n, 4n+ 2}:

• When d = 4n, complex conjugation changes the sign of the product (49) (be-
cause it changes the sign of the iI on the right-hand side), so it exchanges two
inequivalent irreducible representations Cliffeven with each other. This shows
that an irreducible representation Cliffeven is not equivalent to its complex
conjugate when d = 4n.

• When d = 4n+ 2, complex conjugation doesn’t change the sign of the prod-
uct (49), so it doesn’t exchange two inequivalent irreducible representations
Cliffeven with each other. Cliffeven has only two irreducible representations,
so this shows that an irreducible representation Cliffeven is equivalent to its
complex conjugate when d = 4n+ 2.

These results will be used later to prove the existence of some symmetries of the
Weyl equation, and the non-existence of others.

64Article 03910
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23 A specific matrix representation

This section describes a specific representation that will be used to construct exam-
ples of linear symmetries of the form (8) and antilinear symmetries of the form (7).
The representation will be assembled using tensor products of the 2× 2 matrices

X =

[
0 1
1 0

]
Y =

[
0 1
−1 0

]
Z =

[
1 0
0 −1

]
,

as explained in article 86175.
When the mostly-minus convention is used for the signature, γ0 squares to

+1 and the other Dirac matrices square to −1. In this case, we can use this
representation for even d:

γ0 = X ⊗ 1⊗ 1⊗ · · ·
γ1 = Y ⊗ 1⊗ 1⊗ · · ·

γ2 = Z ⊗ iX ⊗ 1⊗ · · ·
γ3 = Z ⊗ Y ⊗ 1⊗ · · ·

γ4 = Z ⊗ Z ⊗ iX ⊗ · · ·
γ5 = Z ⊗ Z ⊗ Y ⊗ · · ·

and so on. The Dirac matrices with a factor of iX have only imaginary compo-
nents, and the rest have only real components. For odd d, we can use the same
representation together with the additional Dirac matrix65

γd−1 =
∏
a<d−1

γa if d = 4n+ 1,

γd−1 = i
∏
a<d−1

γa if d = 4n+ 3.

65Compare this to equation (47).
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The normalization is chosen so that γd−1 squares to −1. In both cases (all odd d),
the resulting γd−1 is imaginary.66

When the mostly-plus convention is used for the signature, γ0 squares to −1 and
the other Dirac matrices square to +1. In this case, we can obtain a representation
by including an extra factor of i in each of the Dirac matrices shown above.

The number of real/imaginary Dirac matrices in each case is summarized here
in tables 3 and 4.

# real γas # imag γas
d = 4n odd odd
d = 4n+ 1 odd even
d = 4n+ 2 even even
d = 4n+ 3 even odd

Table 3 – The number of real/imaginary Dirac matrices in the representation constructed
above when the mostly-minus signature convention is used.

# real γas # imag γas
d = 4n odd odd
d = 4n+ 1 even odd
d = 4n+ 2 even even
d = 4n+ 3 odd even

Table 4 – The number of real/imaginary Dirac matrices in the representation constructed
above when the mostly-plus signature convention is used.

66When applied to a Dirac matrix, the adjectives real and imaginary mean that the nonzero components of the
matrix are all real numbers or all imaginary numbers (multiples of i), respectively.
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24 Internal symmetries: introduction

Now consider maps of any of these forms:

σ
(
ψ(x)

)
= Mψ(x) σ linear, (50)

σ
(
ψ(x)

)
= Mψ(x) σ antilinear, (51)

σ
(
ψ(x)

)
= Mψ∗(x) σ linear, (52)

σ
(
ψ(x)

)
= Mψ∗(x) σ antilinear. (53)

The next goal is to explore when (for which d) the Dirac or Weyl equation has
symmetries of these forms. When such symmetries do exist, we will determine the
appropriate matrix M . These are internal symmetries, which means that the
corresponding spacetime isometry is the identity transformation.67

A symmetry of the form (50) always exists, namely the trivial symmetry in
which M is equal to the identity matrix. A symmetry of the form (53) also always
exists, again with M equal to the identity matrix. This can be demonstrated by
taking the adjoint of the whole equation of motion, as in section 20.

The more interesting forms are (51) and (52), because symmetries with these
forms are not always guaranteed to exist. We only need to analyze one of these
forms, because whenever a symmetry of the form (52) exists, we can compose it
with a symmetry of the form (53) to get one of the form (51), and conversely.
Section 26 will analyze the form (52).

Quantum electrodynamics in four-dimensional spacetime has an internal sym-
metry called charge conjugation, denoted C, whose effect on the spinor field
has the form (52).68,69 This is the heritage of the C in the name CPT symmetry,
but remember that CPT symmetry is more general: its existence is guaranteed by
the general principles of relativistic QFT in flat spacetime, but the existence of a
symmetry like C is not.

67Notice that the argument on the right-hand side of equations (50)-(53) is x, not x̄.
68Peskin and Schroeder (1995), section 3.6, pages 70-71
69Section 1.1 in Cordova et al (2018) mentions a more general definition of charge conjugation.
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25 Internal symmetries: preview

Table 5 summarizes the existence results that will be deduced in section 26.

Dirac Weyl
m 6= 0 m = 0 m = 0

d = 4n yes yes no
d = 4n+ 1 no yes
d = 4n+ 2 yes yes yes
d = 4n+ 3 yes yes

Table 5 – Summary of when internal linear symmetries of the form (52) exist. “Yes” means
that such symmetries exist, and “no” means that such a symmetry does not exist.
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26 Internal symmetries: analysis

For a map σ of the form (52), the condition (9) for σ to be a symmetry is shown
here for both signature conventions, mostly minus and mostly plus:

(iγ∂ −m)Mψ∗ = 0 (mostly-minus convention),

(γ∂ +m)Mψ∗ = 0 (mostly-plus convention).

Those conditions will be satisfied for all m if the matrix M satisfies the conditions
shown here for every Dirac matrix γa, given that ψ satisfies the Dirac equation:

γaM = −M(γa)∗ (mostly-minus convention), (54)

γaM = M(γa)∗ (mostly-plus convention). (55)

Section 22 showed that these conditions have solutions if and only if d 6= 4n + 1,
so the Dirac equation with m 6= 0 has symmetries of the form (52) if and only if
d 6= 4n+ 1.

For m = 0, the sign of the γ∂ term in the Dirac equation no longer matters, so
the condition on M becomes

γaM ∝M(γa)∗ (56)

with the same proportionality factor for all γa. Section 22 showed that this condi-
tion has a solution for every d, so the Dirac equation with m = 0 has symmetries
of the form (52) for every d.

For the Weyl equation, which is defined whenever d is even, a symmetry of
this form exists if and only if an irreducible representation of the even part of the
Clifford algebra is equivalent to its complex conjugate. Section 22 showed that it
is if d = 4n+ 2 but not if d = 4n.

Altogether, this establishes the results that were previewed in table 5.
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27 Internal symmetries: construction

According to tables 3 and 4, the conditions (54)-(55) are satisfied by the matrices
shown here, using the representation that was constructed in section 23:

mostly minus mostly plus

d = 4n M ∝
∏

imag γ
a M ∝

∏
real γ

a

d = 4n+ 1 no solution no solution

d = 4n+ 2 M ∝
∏

real γ
a M ∝

∏
imag γ

a

d = 4n+ 3 M ∝
∏

real γ
a M ∝

∏
real γ

a

The product is either over all of the real Dirac matrices or over all of the imaginary
Dirac matrices, as indicated. To see why this works, consider the case d = 4n in
the mostly-minus signature. Table 3 says that the number of Dirac matrices in
the product M ∝

∏
imag γ

a is odd, so M commutes with all imaginary γas and
anticommutes with all real γas, exactly as the condition (54) requires. The other
cases can be verified in a similar way.

For the Dirac equation with m = 0, the condition (56) is satisfied by

M ∝
∏

either

γa (57)

where either means we can use either the product of all real Dirac matrices or
the product of all imaginary Dirac matrices. This works for any d and for either
signature convention, because the overall sign in (56) doesn’t matter when m = 0.

For the Weyl equation, which is defined whenever d is even, this works only if
the number of Dirac matrices in the product (57) is even, so that M commutes with
the projections (34). According to tables 3 and 4, this implies that the solution
(57) works for d = 4n+ 2 but not for d = 4n. This is consistent with the existence
results shown in table 5.
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28 Antilinear time-reflection: introduction

Let x → xT be an isometry consisting of a single reflection along the timelike
direction e0, and consider maps of any of these forms:70

σ
(
ψ(x)

)
= Mψ(xT ) σ linear, (58)

σ
(
ψ(x)

)
= Mψ(xT ) σ antilinear, (59)

σ
(
ψ(x)

)
= Mψ∗(xT ) σ linear, (60)

σ
(
ψ(x)

)
= Mψ∗(xT ) σ antilinear. (61)

Sections 10, 12, and 16 already explored symmetries of the form (58). This section
explores symmetries of the form (59). The other two forms (60) or (61) don’t
require a separate analysis, because they may be converted to (or obtained from)
symmetries of the forms (58) or (59) by composing them with a symmetry of the
form (53), which always exists.

Quantum electrodynamics in four-dimensional spacetime has a an antilinear
symmetry of the form (59) called time reflection symmetry, denoted T. More
generally, in the context of quantum physics, this name may refer to any antilinear
symmetry whose corresponding isometry consists of a reflection along a timelike
direction.71,72 Such a symmetry may have the form (59) or (61).

70The analysis for an isometry consisting of a single reflection along a spacelike direction is similar. This section
considers only reflections along e0, partly to keep the notation simple, and partly because antilinear time-reflection
symmetries play a more prominent role in quantum physics than antilinear space-reflection symmetries do.

71Cordova et al (2018), section 1.1
72Section 2.6 in Weinberg (1995) and section 3.6 in Peskin and Schroeder (1995) review the motive for requiring

a symmetry called time reflection to be antilinear in the context of quantum theory.
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29 Antilinear time-reflection: preview

Table 6 summarizes the existence results that will be deduced in section 30.

Dirac Weyl
m 6= 0 m = 0 m = 0

d = 4n yes yes yes
d = 4n+ 1 yes yes
d = 4n+ 2 yes yes no
d = 4n+ 3 no yes

Table 6 – Summary of when antilinear symmetries of the form (59) exist. “Yes” means that
such symmetries exist, and “no” means that such a symmetry does not exist.
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30 Antilinear time-reflection: analysis

For any value of m, a map of the form (59) satisfies the symmetry condition (10)
if the matrix M satisfies this condition, with ∂Ta ≡ ∂/∂xaT :

(γ∂)∗M = −M(γ∂T ) (mostly-minus convention), (62)

(γ∂)∗M = M(γ∂T ) (mostly-plus convention). (63)

More explicitly,

(γa)∗M =

{
Mγa for a = 0

−Mγa otherwise
(mostly-minus convention), (64)

(γa)∗M =

{
−Mγa for a = 0

Mγa otherwise
(mostly-plus convention). (65)

If an irreducible representation is equivalent to its complex conjugate, and if M ′

is a matrix that intertwines73 those two representions, then the matrix M ≡ γ0M ′

satisfies the condition (64). On the other hand, if an irreducible representation is
equivalent to the one in which each Dirac matrix is replaced by the negative of its
complex conjugate, and if M ′ is a matrix that intertwines those two representions,
then the matrix M ≡ γ0M ′ satisfies the condition (65). According to section 22,
this shows that a matrix M with the required properties exists whenever d 6= 4n+3.
If such a matrix existed when d = 4n + 3, then the matrix M ′ ≡ γ0M could be
used to demonstrate the equivalence of representations that must be inequivalent
according to section 22, so this shows that the Dirac equation with m 6= 0 has
symmetries of the form (59) if and only if d 6= 4n+ 3.

For the Dirac equation with m = 0, the overall sign in equations (62)-(63) no
longer matters, so the Dirac equation with m = 0 has symmetries of the form (59)
for all d.

73Section 22 defines intertwines.
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For the Weyl equation, the matrix M needs to satisfy

BM = ±MB′ (66)

for all bivectors B (with the same sign for all bivectors), where B′ is obtained from
B by taking the complex conjugate and reversing the sign of γ0 (but not of any other
Dirac matrices).74 Such a matrix M exists if and only if this replacement (taking
the complex conjugate and reversing the sign of γ0) gives another representation
that is equivalent to the original one. Reasoning like that used in section 22 may be
used to show that these two representations of the even part of the Clifford algebra
are equivalent to each other if d = 4n but not if d = 4n+ 2, so the Weyl equation
has symmetries of the form (59) if d = 4n but not if d = 4n+ 2. This is consistent
with the existence results shown in table 6.

74The condition (66) on M is expressed in terms of bivectors instead of individual Dirac matrices because, in the
context of the Weyl equation, everything should be formulated using only the even part of the Clifford algebra, which
does not mix the spaces W+ and W− that were defined in section 15 with each other.
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31 Antilinear time-reflection: construction

According to tables 3 and 4, the conditions (64)-(65) are satisfied by the matrices
shown here, using the representation that was constructed in section 23:75

mostly minus mostly plus

d = 4n M ∝ γ0
∏

real γ
a M ∝ γ0

∏
imag γ

a

d = 4n+ 1 M ∝ γ0
∏

real γ
a M ∝ γ0

∏
real γ

a

d = 4n+ 2 M ∝ γ0
∏

imag γ
a M ∝ γ0

∏
real γ

a

d = 4n+ 3 no solution no solution

For m = 0, the sign of the γ∂ term in the Dirac equation no longer matters, so
the condition on M becomes76

(γ∂)∗M ∝M(γ∂T ). (67)

This condition is satisfied by

M ∝ γ0
∏

either

γa (68)

where either means we can use either the product of all real Dirac matrices or
the product of all imaginary Dirac matrices. This works for any d and for either
signature convention.

For the Weyl equation, which is defined whenever d is even, this works only if
the number of Dirac matrices in the product (68) (including the first factor of γ0)
is even, so that M commutes with the projections (34). According to tables 3 and
4, this implies that the solution (68) works for d = 4n but not for d = 4n+ 2. This
is consistent with table 6.

75When d is even, these solutions can be obtained by composing other symmetries that were established in sections
13, 20, and 26.

76The superscript T here applies to ∂, as in section 30: ∂Ta ≡ ∂/∂xaT . It does not denote the transpose of a matrix.
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32 Antilinear time-reflection: another formulation

Using the mostly-minus convention for the signature, we can choose a matrix rep-
resentation as in section 23 so that γ0 is hermitian and the other Dirac matrices
are antihermitian:

(γa)∗ =

{
(γa)transpose if µ = 0

−(γa)transpose otherwise.
(69)

The transpose of a matrix M is usually denoted MT , but the notation M tranpose is
used here instead to prevent confusion with the different meaning of the superscript
T in sections 30-31. Using (69), the condition (64) reduces to

(γa)transposeM = Mγa. (70)

Using the mostly-plus convention instead gives the opposite sign in (69), and com-
bining that with (65) gives (70) again. This shows that equation (70) is a more
concise way to express the conditions that M must satisfy in order for (59) to be a
symmetry of the Dirac equation with m 6= 0, at least in a representation where γ0

is hermitian and the other Dirac matrices are antihermitian, like the representation
described in section 23.
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33 Cross-checking the (non)existence results

The preceding sections derived several results about the existence or non-existence
of various types of symmetries. Some of those abstract results were already checked
by constructing the symmetry transformations explicitly when they exist and ob-
serving how the constructions fail when symmetries of those types don’t exist. This
section describes another way of cross-checking the (non)existence results. The idea
is simple: the composition of two or more symmetries is another symmetry. Sup-
pose that a composition of symmetries of types A,B,C would give a symmetry of
type D. If symmetries of types A and B exist and symmetries of type D don’t,
then symmetries of type C must not exist, either.

Here’s one example of such a cross-check. Table 5 asserts that the Dirac equation
with m 6= 0 does not have a symmetry of the form

σ
(
ψ(x)

)
= matrix× ψ∗(x) σ linear (71)

when d = 4n+ 1. If it did, then we could compose it with symmetries of the forms

σ
(
ψ(x)

)
= matrix× ψ∗(xPT ) σ antilinear (72)

σ
(
ψ(x)

)
= matrix× ψ(xT ) σ antilinear, (73)

whose existence was established in sections 20 and 30, to produce a symmetry of
the form

σ
(
ψ(x)

)
= matrix× ψ(xP ) σ linear, (74)

where the isometry x → xP is the composition of the isometries x → xPT and
x → xT . Table 1 says that a symmetry of the form (74) does not exist when
d = 4n+ 1, so these (non)existence results are consistent with each other.

Here are a few more examples:

• Table 5 also asserts that the Weyl equation does not have a symmetry of the
form (71) when d = 4n. If it did, then we could compose it with symmetries
of the forms (72) and (73), whose existence was established in sections 20 and
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30, to produce a symmetry of the form (74), which does not exist according
to table 1, so these (non)existence results are also consistent with each other.

• Table 6 asserts that the Dirac equation with m 6= 0 does not have a symmetry
of the form (73) when d = 4n + 3. If it did, then we could compose it
with antilinear symmetries of the forms (71) and (72), whose existence was
established in sections 26 and 20, to produce a linear symmetry of the form
(74), which does not exist according to table 1, so these (non)existence results
are also consistent with each other.

• Table 6 also asserts that the Weyl equation does not have a symmetry of
the form (73) when d = 4n + 2. If it did, then we could compose it with
symmetries of the forms (71) and (72), whose existence was established in
sections 26 and 20, to produce a symmetry of the form (74), which does not
exist according to table 1, so these (non)existence results are also consistent
with each other.
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