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The Free Nonrelativistic Quantum
Particle and Localized Detectors

Randy S

Abstract Many introductions to quantum mechanics use the
position operator to formulate a model of a single nonrelativistic
quantum particle with zero spin. This article re-introduces that
model using particle-detection observables instead. This clarifies
how the model relates to the general principles of quantum theory
(articles 03431) and quantum field theory (article 21916).
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1 Introduction

This article (re)introduces a simple model of an isolated nonrelativistic1 quantum
particle with no spin. For the rest of this article, I’ll call it the single-particle
model.2 This model is already treated in detail in many existing introductions to
quantum mechanics,3 but the goal here is different. Here, the goal is to present the
model in a way that helps clarify how it relates to the general principles of quantum
theory introduced in articles 03431 and 21916, especially how it relates to quantum
field theory (QFT). In general, QFT doesn’t assign observables to particles. It
assigns (sets of) observables to regions of spacetime instead. Such observables are
called local observables. This article introduces the single-particle model with
an emphasis on its local observables.

To specify a model, we specify its observables – things that can be measured.
The single-particle model has local observables that detect the presence/absence
of the particle in a given region of space at a given time.4 I’ll call them detection
observables. They will be constructed explicitly in section 6. First, section 2
previews a few of the model’s important properties with a perspective that is a
little different than most of the other existing introductions to this model.

Throughout this article, D denotes the number of spatial dimensions,5 and
boldface denotes a quantity with D components, as in x = (x1, ..., xD). The
standard abbreviations

x · y ≡ x1y1 + · · ·+ xDyD x2 ≡ x2
1 + · · ·+ x2

D

will be used.

1Nonrelativistic means moving very slowly compared to the speed of light.
2This isn’t the only single-particle model. Other single-particle models differ from this one in various ways, like

including a background field, including nonzero spin, and having Lorentz symmetry.
3One such introduction is Introduction to Quantum Mechanics by Griffiths, 1995.
4This article mostly uses the Heisenberg picture (article 22871).
5Space is three-dimensional in the real world, but sometimes we may want to consider easier examples in lower-

dimensional space, such as one-dimensional space.
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2 Preview

This section previews a few important properties of the model that will be con-
structed explicitly in section 6.

For any region R of space and any time t, the model has a projection operator
Q(R, t). The complementary projection operator 1 − Q(R, t) will be abbreviated
Q(R, t). A detection observable is represented by a pair {Q(R, t), Q(R, t)}. These
projection operators represent the two possible outcomes when the observable is
measured: the outcome Q(R, t) means that the particle is (at least momentarily)
localized entirely inside R at time t, and the outcome Q(R, t) means it’s localized
entirely outside of R at time t.6,7

One important property of these observables is that for any time t, they satisfy

Q(R1, t)Q(R2, t) = Q(R1 ∩R2, t), (1)

where R1∩R2 is the intersection of the two regions. This implies that the detection
observables at time t all commute with each other, because R1 ∩R2 = R2 ∩R1.

Another important property of the model is its symmetry under translations in
space and time: it has a continuous family of unitary operators U(x, t) for which8

Q(R + δx, t+ δt) = U−1(δx, δt)Q(R, t)U(δx, δt) (2)

and
U(x1, t1)U(x2, t2) = U(x1 + x2, t1 + t2). (3)

Equation (3) implies that all of these unitary operators commute with each other,
because x1 + x2 = x2 + x1 and t1 + t2 = t2 + t1. Thanks to Stone’s theorem,9

6 The particle was not necessarily localized in either of these two regions before time t. In quantum theory, the
properties that a system has can depend on what is measured (article 70833).

7 These observables correspond to detecting the presence/absence of the particle in a region R with a perfectly
sharp boundary. This is only an idealization, because real detectors don’t have perfectly sharp boundaries. That
idealization shouldn’t bother us too much, though, because any model of a single particle is obviously much too
simplistic to describe the microscopic complexities of real detectors anyway.

8R + δx denotes the region obtained by translating R by an amount x. In other words, R + δx consists of the
points obtained by adding δx to the coordinates of the points in R.

9Article 22871
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they can all be written as10,11

U(x, t) = exp

(−i
~

(x ·P + tH)

)
≡ exp

(−i
~

(x1P1 + · · ·+ xDPD + tH)

)
(4)

for some fixed set of self-adjoint operators P1, ..., PD and H that all commute with
each other. The operator H that generates time translations is called the hamil-
tonian or energy operator (article 22871), and the operators Pk that generate
space translations are called the momentum operators.

Another important property of the model is this relationship between the energy
and momentum operators:

H =
P2

2m
≡ P 2

1 + · · ·+ P 2
D

2m
, (5)

where m is the particle’s mass. This looks like the familiar relationship between the
energy and momentum of a nonrelativistic particle in classical physics, but here the
quantities H and Pk are operators. They can be regarded as observables. Equation
(2) says that they don’t commute with the local observables Q(R, t). The operators
Q(R, t) don’t commute with each other, either, except at equal times (equation (1)).
The fact that the model’s observables don’t all commute with each other is what
makes it quantum.

Section 6 constructs the observables Q(R, t) as operators on a Hilbert space.
These are not the model’s only local observables, but we can use them to define all
of the others. This is the rule:12 for an observable A to qualify as being localized
in region R at time t, it must satisfy AQ(R, t)|ψ〉 ∝ Q(R, t)|ψ〉 for all |ψ〉, where
R is the complement of R (the largest region that does not intersect R).

10I won’t review the precise definition of the exponential of an operator here, but the key properties are
d
dx exp(xA) = A exp(xA) and exp(A + B) = exp(A) exp(B) for any real parameter x and any operators A,B that
commute with each other.

11The minus sign and the factor of ~ are conventional.
12This rule is consistent with the general principle that observables localized in non-intersecting regions of space

at the same time should commute with each other (article 21916).
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3 The Hilbert space, part 1

In quantum theory, observables are represented by operators on a Hilbert space
H.13 The single-particle model uses a specific Hilbert space, one that is infinite-
dimensional and separable. This article describes the Hilbert space in a way that
is convenient for the single-particle model, but remember that the same Hilbert
space can be described in many very different-looking ways. A model is defined by
its observables, not by the Hilbert space.

An element of H will be represented by a complex-valued function ψ(x) of
D real variables x = (x1, ..., xD).14 A function ψ is called normalizable if the
quantity ∫

dDx
∣∣∣ψ(x)

∣∣∣2 (6)

is well-defined (not infinite). Only normalizable functions are used to represent
elements of H.

The quantity (6) can be zero even if the function ψ is not zero. In particular,
if ψ(x) is zero everywhere except at a finite number of points x, then the quantity
(6) is still zero. Any function for which (6) is zero is said to have zero norm. Any
function with zero norm represents the unique zero element of H. If the difference
two functions has zero norm, then they both represent the same element of H.

13The symbol H for the Hilbert space should not be confused with the symbol H for the hamiltonian.
14The Greek letter ψ is spelled “psi” and pronounced “sigh,” like the “sci” in science. In contrast, the Greek letter

φ (spelled “phi”) is pronouned “fee.” Some communities might use different dialects.
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4 The Hilbert space, part 2

When thinking of the Hilbert space in abstract terms, we can use the symbol |ψ〉
to denote the element of H represented by the function ψ(x). A Hilbert space is a
vector space, so |ψ〉 can also be called a vector.15 Elements of H can be added.
The vector |ψ〉+ |φ〉 is represented by the function

ψ(x) + φ(x).

If z is a complex number, then the vector z |ψ〉 is represented by the function

z ψ(x).

The zero vector is represented by the zero function.
A Hilbert space is more than just a vector space: it also has an inner product.

In this case, the inner product is defined by16

〈φ |ψ 〉 ≡
∫
dDx φ∗(x)ψ(x), (7)

where ∫
dDx f(x) ≡

∫ ∞
−∞

dx1 · · ·
∫ ∞
−∞

dxD f(x1, ..., xD).

This has the required property (
〈φ|ψ〉

)∗
= 〈ψ|φ〉. (8)

This Hilbert space is infinite-dimensional. It’s also separable (article 90771), as
required in quantum theory.

15The word “vector” here refers to a vector in the abstract vector space H, which is infinite-dimensional.
16The notation A ≡ B means that A is defined by B.
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5 Notation

For any operator A on the Hilbert space, this article uses the notation Aψ(x) for a
function that represents A|ψ〉, given that the function ψ(x) represents |ψ〉. Think
of “Aψ” as the name of a new function whose value at x is Aψ(x).

With that notation, using A† for the adjoint of A is recommended, instead of
using A∗ to denote the adjoint as in articles 74088 and 03431. To see why, consider
the (unbounded) operator Pk defined by17

Pkψ(x) = −i~∇kψ(x), (9)

where ∇k is the derivative with respect to the kth component of x. The operator
Pk is self-adjoint, but the complex conjugate of equation (9) is(

Pkψ(x)
)∗

= i~∇kψ
∗(x),

so (
Pkψ(x)

)∗ 6= P †kψ
∗(x).

If the adjoint of Pk were denoted P ∗k , then the two sides of this inequality might

mistakenly be equated with each other. Writing P †k for the adjoint of Pk can help
prevent that mistake.

17This is equation (11) in section 6.
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6 Construction of the model

This section completes the construction of the model that was previewed in section
2. The first step is to define the detection observables and the unitary translation
operators at the arbitrary reference time t = 0. The projection operator Q(R, 0) is
defined by

Q(R, 0)ψ(x) =

{
ψ(x) if x ∈ R
0 otherwise

(10)

for all functions ψ.18 The unitary translation operator U(x, 0) is defined by

U(y, 0)ψ(x) = ψ(x− y).

Using equation (4), this implies that the momentum operators Pk are given by19

Pkψ(x) = −i~∇kψ(x), (11)

where ∇k is the derivative with respect to the kth component of x. The operators
Pk are not defined on the whole Hilbert space,20 but they are defined on a dense
subset: any element of the Hilbert space can be approximated arbitrarily well by
one on which the momentum operators are defined.21

To finish the construction, use equation (5) and (11) to define the hamiltonian
H, use Stone’s theorem to define the unitary time translation operators, and then
use (2) and (10) to define Q(R, t) for all other times t.

18Recall that any function with zero norm represents the zero vector in H, so if the region R is such that every
function of the form (10) has zero norm, then Q(R, 0) = 0. In particular, if R consists of a single point, then
Q(R, 0) = 0.

19To deduce this, consider the effect of the translation operator on a real analytic function, which is defined by its
Taylor expansion: ψ(x− y) = exp(−y · ∇)ψ(x) with exp(ω) ≡∑n≥0 ω

n/n!.
20They are not defined on functions that have sharp edges or discontinuities.
21The fact that the set of smooth (infinitely differentiable) functions is dense in the Hilbert space can be deduced

by starting with any function in the Hilbert space and convolving it with an arbitrarily narrow mollifier (https:
//en.wikipedia.org/wiki/Mollifier) to get a smooth function that approximates the original one arbitrarily
closely. The function (33) used for a different purpose in section 15 can also be used a mollifier.

9
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7 Ideal measurement of a detection observable

Let |ψ〉 be a state-vector representing whatever we know about how the physical
system was prepared before the measurement, and use the abbreviation

ρ(· · · ) ≡ 〈ψ| · · · |ψ〉〈ψ|ψ〉 . (12)

Starting with this state, consider a perfect measurement of the detection observable
{Q(R, t), Q(R, t)}. The general principles of quantum theory (article 03431) say
that the quantity

p ≡ ρ
(
Q(R, t)

)
(13)

is the probability that we should assign to the possible outcome Q(R, t) of the
measurement. In other words, this is the probability that the outcome of the
measurement will be “the particle is localized entirely within R.” The probability
of the opposite outcome, “the particle is localized entirely outside of R,” is

ρ
(
Q(R, t)

)
= 1− p.

If the state-vector |ψ〉 is represented by a function ψ(x), then equations (2) and
(10) give this expression for the probability (13):

p =

∫
R d

Dx
∣∣∣ψ(x, t)

∣∣∣2∫
dDx

∣∣∣ψ(x, t)
∣∣∣2 (14)

where the subscript R in the numerator specifies the domain of integration, and
ψ(x, t) is a function representing the state-vector U(t)|ψ〉 with

U(t) ≡ e−iHt/~. (15)

Thanks to equation (14), we can analyze the particles’ behavior by analyzing the
time-dependence of the function ψ(x, t). This way of representing the model’s
time-dependence is called the Schrödinger picture.

10
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8 The Schrödinger equation

Suppose that the state-vector |ψ〉, which can be represented by a function ψ(x),
represents22 everything we know about how the physical system was prepared.
When we do a measurement that asks “is the particle localized in R at time t,”
the probability that the outcome is “yes” is given by equation (14). The function
ψ(x, t) on the right-hand side of that equation is defined to be a function that
represents the state-vector U(t)|ψ〉, which depends on time through the unitary
operator U(t) defined in equation (15). According to equations (5) and (11), this
function satisfies

i~
∂

∂t
ψ(x, t) = −(~∇)2

2m
ψ(x, t). (16)

Equation (16) is one example of a Schrödinger equation. After solving equation
(16) subject to the given initial condition ψ(x, 0) = ψ(x), we can use equation (14)
to read off the probability that a measurement of the observable {Q(R, t), Q(R, t)}
will give the outcome Q(R, t).

22The word “represent” is used twice in this sentence, with two different meanings. The first refers to using one
mathematical object to represent another mathematical object. The second refers to using a mathematical object
to represent a non-mathematical concept.

11
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9 Example of a solution

Here’s one example of a function ψ(x, t) that satisfies equation (16):23

ψ(x, t) = N(t) exp

[
−(x− x0)

2

2σ2η(t)

]
(17)

where x0 is a given point in space (independent of t) and where

N(t) =
(
η(t)

)−D/2
η(t) ≡ 1 +

i~t
σ2m

.

For this solution, the integrand in equation (14) is

|ψ(x, t)|2 ∝ exp

[
−(x− x0)

2

σ2|η(t)|2

]
(18)

with

σ2|η(t)|2 = σ2 +
1

σ2

(
~t
m

)2

.

At any given time t, the function (18) is mostly concentrated in a region of width
∼ σ|η(t)| centered on the point x0. The width is minimized at t = 0 and grows
without bound as t→∞.

23Section 14 shows a slightly more general example.
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10 Dispersion

Suppose that the single-particle system is prepared so that the state is given by
equation (17) at time t = 0, when the function’s width is ∼ σ. After that time,
the width grows without bound as time passes, so equation (14) says that the
probability of detecting the particle in any region of size ∼ σ declines toward zero
as time passes. To detect the particle with certainty (probability ≈ 1), we need
to consider a region of size ∼ σ|η(t)|, which grows without bound as t increases.
This is called dispersion. Here are a few examples of the time needed for the
function’s width to grow from 10−10 meters (roughly the size of an atom) to 10−3

meters (roughly the width of a line drawn by a typical pencil), for various values
of m and σ:24

Mass m Initial width σ Final width σ|η(t)| Elapsed time t

10−3 kg (pill) 10−10 m 10−3 m 1018 s

10−9 kg (speck) 10−10 m 10−3 m 1012 s

10−30 kg (electron) 10−10 m 10−3 m 10−9 s

These examples are based on the special solution described in section 9, but the
conclusion is more general: every solution of equation (16) eventually disperses.
The larger the particle’s mass, the slower the dispersion.

The examples shown above are still relevant even if the mass m is much larger
than anything we would normally call a particle, because this same model turns
out to be valid also for a (nonrelativistic) composite object if we ignore the object’s
internal structure. In that context, measuring the observable Q(R, t) corresponds
to asking whether the object’s center of mass is within R at time t, even if the
whole object is much larger than R.

24To put these examples in perspective: 1012 seconds is more than 10,000 years.

13
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11 Position as an observable

Section 2 described the model in terms of the detection observables Q(R, t), which
are local observables. Traditional presentations of the single-particle model package
those local observables into nonlocal observables called position operators, one
for each dimension of space. This is often useful, even though it tends to obscure
the model’s relationship to QFT (section 1).

For motivation, suppose that we partition space into cells of some tiny size ∼ ε,
and let Rn denote the nth cell. For any given time t, the corresponding detection
observables satisfy Q(Rn, t)Q(Rn′, t) = 0 for n 6= n′ because the cells don’t overlap.
We can think of this set of projection operators as a single observable, with each
projection operator Q(Rn, t) representing a possible outcome (“the particle is in
Rn at time t”) when the observable is measured. Such a measurement amounts to
measuring the particle’s coordinates with resolution ∼ ε.

Now consider the operators X1(t), ..., XD(t) defined by

Xk(t) ≡ U−1(t)XkU(t) Xkψ(x) = xkψ(x), (19)

where xk is the kth component of x and U(t) is given by (15). If the cells in the
preceding paragraph are small enough, then

Xk(t) ≈
∑
n

(Rn)kQ(Rn, t) (20)

where (Rn)k denotes the kth coordinate of the center of the nth cell. For this reason,
the operators Xk(t) can be regarded as observables whose measurement – which
necessarily has limited resolution – returns the kth coordinate of the particle’s
location. These the position operators.25 They can be regarded as observables,
but equation (20) shows that they are not local observables: they are not associated
with any one bounded region of space.

25I would prefer to call them location operators because, in common speech, the word position is also used to
mean orientation.

14
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12 Momentum and velocity

This section derives the relationship26

Pk = m
d

dt
Xk(t), (21)

where Pk are the momentum operators defined in equation (11). This is an operator-
valued version of the relationship between momentum and velocity that is already
familiar from nonrelativistic classical physics. The interpretation of dXk(t)/dt as
a velocity observable is justified by equations (14) and (20).

Equation (15) implies

i~
d

dt
U(t) = H U(t). (22)

Take the time-derivative of the first of equations (19) and use (22) to get

i~
d

dt
Xk(t) =

[
Xk(t), H

]
, (23)

where [A,B] ≡ AB − BA denotes the commutator of two operators A and B.
The operators Xk defined in the second of equations (19) satisfy27

[Xj, Pk] = i~ δjk ≡
{
i~ if j = k,

0 otherwise,

and the fact that the momentum operators commute with the hamiltonian then
implies [

Xj(t), Pk
]

= i~ δjk.
Use this in (23) to get the result (21).

26This model doesn’t know about the existence of a limiting speed. The nonrelativistic approximation is built into
the model itself, thanks to the relationship (5).

27This follows from the identity xj∇kψ(x)−∇k

(
xjψ(x)

)
= δjkψ(x).
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13 Boost operators

Let p = (p1, ..., pD) be a list of real numbers. For each p, define an operator U(p)
by

U(p)ψ(x) ≡ eip·x/~ψ(x). (24)

These operators are unitary. Use the definition (11) of the momentum operators
Pk to deduce

PkU(p)|ψ〉 = U(p)(Pk + pk)|ψ〉 (25)

for all |ψ〉 on which Pk is defined. In words: the unitary operator U(p) implements
a boost – a transformation that shifts all momenta by the amount p.

The boost operators may also be written

U(p) = exp

(
i

~
p ·X

)
where X = (X1, ..., XD) is the list of operatorsXk defined by the second of equations
(19).

16
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14 Boost operators: example

To illustrate the effect of the boost operators, consider this solution of (16):28

ψ̃(x, t) = N(t) exp

−
(
x− x0 − ipσ

2

~

)2

2σ2η(t)

 (26)

where x0 and p are constants (independent of t) and where N(t) and η(t) are
defined as in section 9. When p = 0, this solution reduces to the solution ψ(x, t)
that was shown in equation (17). At time t = 0, the functions (26) and (17) are
related to each other by the boost operator (24):

ψ̃(x, 0) ∝ U(p)ψ(x, 0). (27)

According to equations (21) and (25), the centroid of this function should move
with constant velocity p/m as time passes. To confirm that it does, consider the
magnitude of (26):

|ψ̃(x, t)|2 ∝ exp

[
−(x− x0 − vt)2

σ2|η(t)|2

]
v ≡ p/m. (28)

The centroid of this function moves with constant velocity p/m, as expected from
(27).

This example showed that the centroid of the function U(t)U(p)ψ(x, 0) moves
with constant velocity p/m. In contrast, the centroid of the function U(p)ψ(x, t) =
U(p)U(t)ψ(x, 0) does not move at all: the magnitude of this function is the same
as the magnitude of ψ(x, t). This illustrates the fact that the boost operators don’t
commute with the time evolution operators, which is clear from equations (5) and
(25).

28Problem 2.22 in Griffiths (1995), and page 64 in Cohen-Tannoudji et al (1977)

17
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15 The state-update rule for indirect measurements

Suppose that the observable {Q(R, t), Q(R, t)} is perfectly measured, and suppose
that the outcome is Q(R, t) – the particle is in R at time t. If the state before the
measurement was represented by a state-vector |ψ〉, then the state-update rule
(article 03431) says that we should use the projected state-vector Q(R, t)|ψ〉 for
making predictions about subsequent measurements.

But recall footnote 7: the detection observables Q(R, t) correspond to detecting
the presence/absence of the particle in a region R with a perfectly sharp bound-
ary. This is only an idealization, because real detectors don’t have perfectly sharp
boundaries. In reality, observables like Q(R, t) are never measured directly. Real
measurements involve interactions of the particle with a larger complex system.
The single-particle model doesn’t know anything about such interactions, but we
can at least emulate the smooth-edges quality of such indirect measurements by
generalizing the state-update rule. Instead of using mutually orthogonal projection
operators to represent the possible outcomes of the measurement, the generalized
rule (article 03431) uses a list of operators M1,M2, ... satisfying∑

n

M †
nMn = 1, (29)

where M †
n is the adjoint of Mn. If the outcome Mn is obtained, then we account

for this by replacing the original state |ψ〉 with Mn|ψ〉.
Here’s a contrived example in one-dimensional space (D = 1) to illustrate how

this generalization can emulate the smooth-edges quality of an indirect measure-
ment with resolution ∼ ε. For each integer n, define an operator Mn by

Mnψ(x) = f(x− nε)ψ(x) (30)

where f(x) is a real-valued function satisfying∑
n

f 2(x− nε) = 1. (31)

18
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This clearly satisfies (29). Many functions f(x) satisfy this condition. The most
obvious example is the window function

f(x) =

{
1 if − ε/2 < x < ε/2

0 otherwise,

but in this case Mn is one of the detection observables defined earlier, which isn’t
what we want. We want an example with smooth edges, like this one:

f(x) =

(
g(x)

g(x+ ε) + g(x) + g(x− ε)

)1/2

(32)

with

g(x) =

{
exp

(
−2

1−(x/ε)2

)
if − ε < x < ε

0 otherwise.
(33)

The following picture shows graphs of f 2(x), f 2(x− ε), and f 2(x+ ε) as solid lines,
and their sum as a dotted line:

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x/ε

0.0

0.2

0.4

0.6

0.8

1.0

This picture demonstrates that the operators defined by (30) and (32) satisfy the
condition (29). This shows that the generalized state-update rule can emulate the
smooth-edges quality of an indirect measurement.

19
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