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Conserved Currents
and Gauge Invariance

Randy S

Abstract In electrodynamics, the same local conser-
vation law for the charge/current density can be derived
using either of two different methods. One method re-
lies on the equation of motion for the electromagnetic
field, and the other method uses only the equation of
motion for the charged matter. This article explains
why both methods lead to the same conservation law.
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1 Introduction

Consider classical electrodynamics in N -dimensional flat spacetime. The electro-
magnetic field has components

Fab(x) ≡ ∂aAb(x)− ∂bAa(x), (1)

where Aa(x) are the components of the gauge field. The equation of motion
(EoM) for the gauge field has the form

∂bF
ba(x) + Ja(x) = 0, (2)

where Ja are the components of a quantity called the current density or just
current.1 The current is expressed in terms of matter fields or particles,2 each of
which is subject to its own EoM.

For any behavior of the gauge field, whether or not it satisfies the EoM (2), the
Faraday tensor F ab automatically satisfies the identity

∂aF
ab = 0. (3)

When combined with the EoM (2), this implies the local conservation law

∂aJ
a = 0 (4)

for the current. When viewed this way, the conservation law is a condition that the
matter’s EoMs must satisfy in order to be consistent with the gauge field’s equation
of motion.

This same current conservation law may also be derived in a different way,
without using the identity (3). It can be derived instead using only the matter’s
EoMs, as long as the action from which they are derived is gauge invariant.

This article explains why these two seemingly different approaches – one relying
on the equations of motion for the matter, and one not – both lead to the same
conservation law (4) for the current.

1In the usual Minkowski coordinate system (article 48968), the component J0 is the charge density.
2In this article, any field that is not constructed from the gauge field A is called “matter.” In the context of

general relativity, everything except the metric field is called “matter,” including the electromagnetic field.
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2 Current conservation from the gauge-field EoM

This section shows how to derive the conservation law (4) using the EoM for the
gauge field, without using any EoMs for the matter. This approach is based on
these assumptions:

• The EoM for the gauge field satsifies an action principle. In other words, it
may be derived from an action, using the principle of stationary action.

• The action is the sum of two parts, each of which makes a non-zero contribu-
tion to the EoM: One part SA involving only the gauge field A, and one part
Sm that involves both the matter and the gauge field.

• The gauge-only part SA is invariant under gauge transformations, whose effect
on the gauge field is Aa → Aa + ∂aθ for any smooth function θ.

Aside from these basic properties, the explicit form of the action doesn’t matter.
Most importantly, this approach does not assume anything about the EoMs for the
matter.

To explore the consequences of those assumptions, consider an action of the
form

S = SA + Sm (5)

with SA and Sm as described above. According to the action principle, the EoM
for the gauge field is

δS

δAa(x)
= 0. (6)

This may also be written
δSA

δAa(x)
+ Ja(x) = 0 (7)

with

Ja(x) ≡ δSm
δAa(x)

. (8)
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Classical electrodynamics uses

SA = −1

4

∫
dNx FabF

ab (we won’t need this here),

which gives

δSA
δAa(x)

= ∂bF
ba(x) (we won’t need this here, either).

This specific version of SA gives equation (2), but we won’t need such details here.
Using only the gauge invariance of SA, we will deduce

∂a
δSA

δAa(x)
= 0, (9)

which in turn implies the conservation law (4) as explained in section 1.
The remaining task is to derive equation (9). For this, we only need the as-

sumption that SA is invariant under the gauge transformation

Aa → Aa + ∂aθ (10)

for any smooth function θ(x). This may also be written

δAa = ∂aθ. (11)

For an arbitrary variation of the gauge field (not necessarily a gauge transforma-
tion), we have the identity

δSA =

∫
dNx

δSA
δAa(x)

δAa(x). (12)

If we take the transformation δAa(x) to be a gauge transformation (11), then SA
is invariant, so we have

0 =

∫
dNx

δSA
δAa(x)

∂aθ(x). (13)
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If θ(x) has compact support in spacetime, then we can use integration-by-parts to
get

0 =

∫
dNx θ(x)∂a

δSA
δAa(x)

. (14)

The fact that equation (13) (and therefore equation (14)) holds for all compactly-
supported smooth function θ(x) implies equation (9).3 This completes the deriva-
tion of the conservation law (4) from the assumptions that were listed at the begin-
ning of this section. Most importantly, this derivation did not use any equations of
motion for the matter. Instead, we deduced something (equation (4)) about how
the matter must behave.

3In a little more detail: suppose that f(x) is an unknown smooth function satisfying the condition that∫ b

a
dx θ(x)f(x) = 0 for all intervals [a, b], for all smooth functions θ(x) that are zero in a neighborhood of a and

b. Now choose any interval [a, b] in which f(x) is either positive or negative everywhere in that interval. Then no
cancellations can occur if θ ≥ 0 everywhere in that interval, so the assumed condition cannot hold unless f(x) = 0
everywhere. The same idea works for higher-dimensional integrals, too.

5



cphysics.org article 19253 2024-03-04

3 Current conservation from the matter-field EoM

This section shows that if the action for the matter is invariant under gauge trans-
formations in the sense defined below, then the conservation law (4) holds. In this
approach, the conservation law is a consequence of the EoMs for the matter alone.
The EoM for the gauge field (equation (6) or (7)) is not used. This approach is
based on these assumptions:

• The EoMs for the matter collectively satsify an action principle. In other
words, they may all be derived from a single action Sm, using the principle
of stationary action. (The EoM for the gauge field is not used, so it doesn’t
need to satisfy the action principle.)

• The action Sm is invariant under all gauge transformations, as long as the
gauge transformation is applied to the gauge field as well as to the matter.

Aside from these basic properties, the explicit form of the action doesn’t matter.
Most importantly, this approach does not assume anything about the EoM for the
gauge field. The gauge field may simply be prescribed, and it may even be “pure
gauge” (Fab = 0).

Before continuing, I’ll clarify what gauge invariance means when the gauge
field is prescribed. In a model where the gauge field is one of the dynamic fields
whose behavior is governed by the model’s equations of motion (instead of being
prescribed), gauge invariance implies that any gauge transformation applied to
any solution gives another solution. The word gauge alludes to the fact that two
solutions which can be obtained from each other by a gauge transformation are
regarded as being physically equivalent to each other. In contrast, in a model
where the gauge field is merely prescribed, the result of applying an arbitrary
gauge transformation to a solution is typically not another solution of the original
equations of motion – unless we also apply that same gauge transformation to the
gauge field. In this context, gauge invariance assumes that we also apply the same
gauge transformation to the gauge field that we apply to the matter, even though
the gauge field is one of the model’s prescribed inputs.
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To simplify the notation, suppose that the matter consists of fields instead of
particles. Let φ1, φ2, ... denote the list of matter fields, and suppose that the matter
action Sm is invariant under gauge transformations in the sense described above.
Consider any gauge transformation that leaves the matter action Sm invariant and
that affects the gauge field according to δAa(x) = ∂aθ(x). Exactly how the gauge
transformation affects the matter isn’t important in this proof, so we can just write
the effect as δφn. For an arbitrary variation of the fields (not necessarily a gauge
transformation), including the gauge field, we have the identity

δSm =

∫
dNx

(∑
n

δSm
δφn(x)

δφn(x) +
δSm
δAa(x)

δAa(x)

)
.

If we take the transformation to be a gauge transformation, then the assumption
that Sm is invariant gives

0 =

∫
dNx

(∑
n

δSm
δφn(x)

δφn(x) +
δSm
δAa(x)

∂aθ(x)

)
. (15)

This is analogous to the result (13), which is a consequence of the gauge invariance
of SA, but now we have an extra term because the action Sm involves matter fields
fields as well as the gauge field. If the matter fields satisfy their own EoMs, namely

δSm
δφn(x)

= 0,

then equation (15) reduces to

0 =

∫
dNx

δSm
δAa(x)

∂aθ(x). (16)

This is just like equation (13), but with Sm in place of SA, so we get the same
result (9) but with Ja in place of ∂bF

ba. This gives the conservation law (4), but
here we derived it without using any EoM for the gauge field. We used only gauge
invariance of the matter part of the action combined with the EoM for the matter
fields.
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4 Why both approaches give the same result

The preceding sections derived the same conservation law (4) using two different
methods. The difference between the two methods is that one method uses the
EoM for the gauge field, while the other method uses only the EoMs for the matter
fields.

Now we can understand why both approaches give the same result. In electro-
dynamics, the action has the form SA + Sm, and SA and Sm are each separately
invariant under gauge transformations. The term SA involves only the gauge field,
so the gauge invariance of SA gives the identity (9), and then consistency with the
gauge field’s equation of motion (7) requires that the matter fields satisfy the con-
servation law (4). The term Sm involves both matter fields and the gauge field, so
the gauge invariance of Sm gives the identity (15), which reduces to the conservation
law (4) when the matter fields satisfy their equations of motion. This explains why
the same conservation law can be derived either way, at least if explaining “why”
means finding a short list of basic conditions that make the coincidence inevitable.
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5 Nonabelian gauge fields

The previous sections considered only an abelian gauge field – one for which the
gauge group is commutative. This section briefly considers the case of the non-
commutative (nonabelian) gauge group SU(N). (This new “N” is not related to
the “N” in previous sections, which denoted the number of spacetime dimensions.)
The derivations are similar, so the presentation here will be brief.

When the gauge group is SU(N), each spacetime component Aa(x) of the gauge
field is an N ×N matrix, as is the gauge transformation function θ(x). Each field
φn is an N × 1 matrix.4 The effect of a gauge transformation is

δAa(x) ∝ [Da, θ(x)] δφn(x) ∝ θ(x)φn(x)

with
Da ≡ i∂a − eAa(x).

The analog of equation (12) includes a sum over matrix indices, and equation (14)
becomes

0 =

∫
dNx Trace

(
θ(x)

[
Da,

δSA
δAa(x)

])
(17)

This is valid for all θ(x) that comply with the definition of the group SU(N), which
is enough to imply the conservation law

[Da, J
a(x)] = 0

for the current

Ja(x) ≡ δSA
δAa(x)

,

which is now an N × N matrix for each value of the spacetime index a. The
derivation described in section 3 may also be adapted for SU(N), with similar
modifications.

4This assumes the fields belong to the fundamental representation of SU(N).
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