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Matrix Math
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Abstract This article gives a brief review of matrix
algebra, introduces the concept of the exponential of a
matrix, and derives a useful identity for the derivative
of the inverse or determinant of a matrix with respect
to one of its components.
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1 A note about language

The plural form of index is indices, pronouned in-dih-sees, but the singular form is
still index. Indice (“in-dih-see”) is not a word.

Simiarly, the plural form of matrix is matrices, pronouned may-trih-sees, but
the singular form is still matrix. Matrice (“may-trih-see”) is not a word.
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2 A linear transformation in terms of a matrix

Let U and V be two vectors spaces, both over the same field F , with either F = R
or F = C. In this context, elements of F are called scalars. Recall that a map
σ : U → V is called a linear transformation if

σ(u+ u′) = σ(u) + σ(u′) σ(zu) = zσ(u)

for all u, u′ ∈ U and all z ∈ F . If the vector spaces are finite-dimensional, then such
a transformation can be represented by a matrix. Let ua denote the components
of u ∈ U in some fixed basis for U , and let va denote the components of v ∈ V in
some fixed basis for V . Then the components of v ≡ σ(u) may be written

va =
∑
b

Aabub (1)

for some fixed set of coefficients Aab ∈ F that depends only on σ, not on u. The
matrix with components Aab is denoted A, and equation (1) is abbreviated

v = Au.

This can be iterated. Given a sequence of two linear transformations, U → V → W ,
the components wa of the output are related to the components ua of the input by

wa =
∑
b,c

BabAbcuc (2)

where A is the matrix representing the first map U → V , and B is the matrix
representing the second map V → W . Equation (2) is abbreviated

w = BAu.

The overall map U → V → W is represented by the matrix BA, called the product
of B and A, defined by

(BA)ac ≡
∑
b

BabAbc. (3)
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3 Rows and columns

The components Aab of a matrix A can be written explicitly as an array, with
the first index a specifying the row and the second index b specifying the column.
Example: a matrix A of size 2× 3 is written

A =

[
A11 A12 A13

A21 A22 A23

]
.

A vector can be regarded as a matrix of size N×1. Example: a vector v with three
components is written

v =

v1

v2

v3

.
Equation (3) says that the component in the the jth row and kth column of the
product AB is calculated by multiplying the components in the jth row of A by the
corresponding components in the kth column of B, and summing those products.
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4 Transpose and hermitian conjugate

Given a matrix A with components Aab, its transpose AT is the matrix with
components

(AT )ab = Aba.

In words: the transpose exchanges the roles of rows and columns. This definition
implies that the transpose of a product is the product of the transposes in reverse
order:

(AB)T = BTAT .

A matrix A is called symmetric if AT = A, or antisymmetric if AT = −A.
Similarly, given a matrix A with components Aab, its hermitian conjugate

A† is the matrix with components

(A†)ab = (Aba)
∗,

where the asterisk denotes complex conjugation. If the components are all real-
valued, then the hermitian conjugate is the same as the transpose, but they are
different when the components are complex-valued. This definition implies

(AB)† = B†A†.

A matrix A is called hermitian if A† = A, or antihermitian if A† = −A.
The notation A∗ typically denotes the matrix with components

(A∗)ab = (Aab)
∗,

without switching the order of the indices. In words: A∗ is obtained from A by
replacing each component with its complex conjugate, without taking the trans-
pose. However, the notation A∗ is also often used for something different, namely
the adjoint of a linear operator A, especially in the math literature. If a linear
operator is being represented by a matrix, then the adjoint A∗ is represented by
the hermitian conjugate A†, which does involve a transpose. To avoid misunder-
standing, you should always pay close attention to the context when interpreting
the notation A∗.
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5 Matrix algebra

Let V be an N -dimensional vector space, and consider linear transformations from
V to itself. Such a transformation is represented by a square matrix of size N×N .
The set of all square matrices of this size will be denotedMN . For all A,B ∈MN ,
the sum A+B and product AB are both defined

• The sum A+B is the matrix with components (A+B)ab = Aab +Bab.

• The product AB was defined in section 2. The product is associative,
which means (AB)C = A(BC). However, the product is not commutative:
AB 6= BA for most A,B ∈ MN . Two matrices A,B for which AB = BA
are said to commute with each other.

Two members of MN have special names:

• The zero matrix 0 is defined by the property 0 + A = A+ 0 = A for every
A ∈MN . This implies that the components of the zero matrix are all zero.1

The zero matrix also satisfies 0A = A0 = 0 for every A ∈MN .

• The identity matrix I is defined by the property IA = AI = A for every
A ∈ MN . This implies that the diagonal components Iaa are all 1 and the
other components are all zero.2

The product of a scalar z ∈ F and a matrix A ∈MN is another matrix zA ∈MN ,
whose components are (zA)ab = zAab. In words: when multiplying a matrix by a
scalar, every component of the matrix is multiplied by the scalar.

Altogether, MN is an algebra. Its elements can be added to each other, mul-
tiplied by each other, and multiplied by scalars. The algebra is associative but not
commutative.

1Using the same symbol 0 both for the zero matrix and for the individual number zero is relatively safe, because
the distinction is usually clear from the context if it matters at all.

2Sometimes the identity matrix I is denoted by the symbol 1, the same symbol we use for the individual number
1. That’s relatively safe, but this article uses the distinct symbol I for the identity matrix anyway.
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6 Inverse, eigenvectors, and determinant

A given matrix A ∈MN may or may not have an inverse, which is a matrix A−1

defined by the condition
A−1A = AA−1 = I.

A matrix A is called invertible if it has an inverse.
A nonzero vector v is called an eigenvector of A if

Av = λv

for some number λ ∈ F called the eigenvalue.3 A matrix A ∈ MN may have up
to N linearly independent eigenvectors, or it may have fewer. Example: the only
eigenvectors of the matrix

A =

[
1 1
0 1

]
are v ∝ (1, 0). The corresponding eigenvalue is 1.

The determinant of a matrix A, denoted detA, is defined in article 81674
using the wedge product. For A ∈MN , the definition is

(detA)γ1 ∧ γ2 ∧ · · · ∧ γN = (Aγ1) ∧ (Aγ2) ∧ · · · ∧ (AγN), (4)

where γ1, γ2, ..., γN is any set of N linearly independent vectors. If a matrix A has N
linearly independent eigenvectors, then we can take the γks to be those eigenvectors
to see that the determinant of A is the product of the eigenvalues. We can also use
this definition to show that a matrix is invertible if and only if its determinant is
nonzero, using the fact that a matrix is invertible if and only if it maps any set of
linearly independent vectors to another set of linearly independent vectors.

3Every square matrix over the complex numbers C has at least one eigenvalue in C (Axler (1995)), but a square
matrix over R may fail to have any eigenvalues in R (example: the generator of rotations in two-dimensional space).
Sometimes an eigenvalue of A is defined to be a complex number λ for which A−λI is not invertible (Axler (1995)).
The definitions are interchangeable for a matrix over C of finite size, but when dealing with infinite-dimensional
Hilbert spaces, the name eigenvalue is usually reserved for elements of the spectrum that have corresponding eigen-
vectors (article 74088).
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7 Trace

The trace of a matrix A is the sum of its diagonal components:

trA =
∑
a

Aaa. (5)

For some purposes expressing trA in terms of wedge products is convenient, like
the definition of detA in equation (4). If γ1, γ2, ..., γN is any set of N linearly
independent vectors, then

(trA)γ1 ∧ γ2 ∧ · · · ∧ γN = (Aγ1) ∧ γ2 ∧ · · · ∧ γN
+ γ1 ∧ (Aγ2) ∧ · · · ∧ γN
+ γ1 ∧ γ2 ∧ · · · ∧ (AγN). (6)

Proof: For each k, take the vector γk to be the vector whose kth component is 1
and whose other components are zero. Then the kth term on the right-hand side
of (6) is equal to

(Akk)γ1 ∧ γ2 ∧ · · · ∧ γN .
To prove that equation (6) still works for any other set of N linearly independent
vectors, write γk = Sµk for any invertible linear transformation S, and then use
the definition of detS (equation (4)) to see that (6) implies trA = tr(S−1AS) after
canceling a factor of detS from both sides of the equation.

If A has N linearly independent eigenvectors, then we can use these as the
vectors γk in equation (6) to deduce that trA is the sum of the eigenvalues of A.
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8 Diagonal and block-diagonal

A matrix A is called diagonal if Aab = 0 whenever a 6= b. The components with
a = b are called the diagonal components. A diagonal matrix is sometimes
specified by listing its diagonal components, like this:

A = diag(A11, A22, ..., ANN).

Diagonal matrices commute with each other.
More generally, suppose that the list of allowed index-values is partitioned into

subsets, each subset consisting of a list of consecutive values. Then a matrix A is
called block-diagonal if Aab = 0 whenever a and b belong to different subsets.

10



cphysics.org article 18505 2023-02-12

9 The derivative of an inverse

The identity

∂

∂Aab
(A−1)cd = −(A−1)ca(A

−1)bd (7)

holds for any invertible matrix A. To derive this, apply ∂/∂Aab to both sides of
the identity I = A−1A to get

0 =

(
∂

∂Aab
A−1

)
A+ A−1 ∂

∂Aab
A,

and then multiply both sides on the right by A−1 to get

0 =

(
∂

∂Aab
A−1

)
+ A−1

(
∂

∂Aab
A

)
A−1.

The result (7) is an easy consequence of this.
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10 The derivative of a determinant

For any invertible matrix A, the identity

∂

∂Aab
detA = (A−1)ab detA (8)

holds. To prove this, suppose that A is an N ×N matrix, and let γ1, γ2, ..., γN be
a set of N linearly independent vectors. The trace of a matrix is equal to the sum
of its diagonal components, so the identity

tr

(
∂A

∂Aab
B

)
= Bab

holds for all matrices A,B. In particular,

tr

(
∂A

∂Aab
A−1

)
= (A−1)ab.

Now, recall that the determinant of A is defined by

(detA)γ1 ∧ γ2 ∧ · · · ∧ γN = (Aγ1) ∧ (Aγ2) ∧ · · · ∧ (AγN),

Apply ∂/∂Aab to both sides to get

∂

∂Aab
(detA)γ1 ∧ γ2 ∧ · · · ∧ γN = (MAγ1) ∧ (Aγ2) ∧ · · · ∧ (AγN)

+ (Aγ1) ∧ (MAγ2) ∧ · · · ∧ (AγN)

+ (Aγ1) ∧ (Aγ2) ∧ · · · ∧ (MAγN) (9)

with M ≡ ∂A
∂Aab

A−1. The right-hand side of (9) is equal to

(trM)(Aγ1) ∧ (Aγ2) ∧ · · · ∧ (AγN) = (trA)(detA)γ1 ∧ γ2 ∧ · · · ∧ γN .

Combining these ingredients gives the result (8).
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11 The expontential of a matrix

If the components of a matrix A are functions of a real variable θ, then we can say
that the matrix itself is a function of θ, denoted A(θ). The derivative of A(θ) with
respect to θ is defined component-wise:(

d

dθ
A(θ)

)
ab

≡ d

dθ
Aab(θ).

Given any matrix B ∈MN , the exponential function A(θ) = exp(θB) is a matrix
A(θ) whose components are functions of θ, defined by the conditions

d

dθ
exp(θB) = B exp(θB) exp(θB)

∣∣
θ=0

= 1. (10)

The definition is unambiguous because this system of N 2 first-order differential
equations has a unique solution.4 The matrix exp(θB) is also denoted eθB or eBθ.

As an example, consider the matrix

B =

[
0 1
−1 0

]
,

which satisfies B2 = −I. Then the definition (10) is satisfied by

eBθ = I cos θ +B sin θ =

[
cos θ sin θ
− sin θ cos θ

]
. (11)

We recognize this as a rotation matrix. The matrix B is called the generator of
these rotations. This is analogous to Euler’s formula eiθ = cos θ + i sin θ, where
i is the imaginary unit i2 = −1.

The definition implies eθBeφB = e(θ+φ)B, just like the exponential of a real
variable. If B and C commute with each other, then we also have eBθeCθ = e(B+C)θ.
However, beware that eBθeCθ 6= e(B+C)θ for most matrices B,C ∈MN .

4To prove this, suppose it had two solutions, say A(θ) and Ã(θ). Then their difference would be a solution of the
first of equations (10) that is equal zero when θ = 0, which implies that it equals zero for all θ.
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12 More exampes of matrix exponentials

The previous section showed how to use a matrix exponential to represent a rotation
in a two-dimensional vector space (N = 2). More generally, we can use a matrix
exponential to represent a rotation in an arbitrary plane in an N -dimensional vec-
tor space. Let a, b be two linearly indepenent vectors, so that they define a plane.
We can represent each vector as a matrix of size N × 1, and then the plane itself
is naturally represented by the antisymmetric matrix B = abT − baT . This ma-
trix satisfies B3 ∝ −B, and we can normalize it so that B3 = −B. With that
normalization, the definition (10) is satisfied by

eBθ = I + (1− cos θ)B2 +B sin θ.

This generalizes the earlier example (11). Here’s an example in three-dimensional
space: if a = (1, 0, 0) and b = (0, 1, 0), then

B =

 0 1 0
−1 0 0
0 0 0

 ⇒ eBθ =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

.
A similar idea can be used to represent Lorentz boosts (article 77597). For this,

we need the generator B to be symmetric and satisfy B3 = B, without the minus
sign. Then the definition (10) is satisfied by

eBθ = I + (cosh θ − 1)B2 +B sinh θ.

The hyperbolic functions cosh θ and sinh θ are defined in article 77597. Example:

B =

0 1 0
1 0 0
0 0 0

 ⇒ eBθ =

cosh θ sinh θ 0
sinh θ cosh θ 0

0 0 1

.
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In addition to rotations in space-space planes and boosts in time-space planes,
the Lorentz group also includes null rotations in a plane that contains exactly
one lightlike direction. A null rotation is the borderline between a rotation and a
boost. The null rotation

eBθ =


1 + θ2/2 −θ2/2 θ 0
θ2/2 1− θ2/2 θ 0
θ −θ 1 0
0 0 0 1


is generated by the sum of a rotation-generator and a boost-generator:

B =


0 0 1 0
0 0 1 0
1 −1 0 0
0 0 0 0

 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

+


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

.
One way to prove this is to use the fact that this generator satisfies B3 = 0, so the
definition (10) is satisfied by

eBθ = I + θB +
θ2

2
B2.
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13 The determinant of an exponential

The identity

det exp(θB) = exp(θ trB) (12)

holds for any matrix B. To prove this, start with the definition of the determinant
of A ≡ exp(θB), as in equation (4). Take the derivative of that definition with
respect to θ and use (6) to deduce

d

dθ
det exp(θB) = (trB) det exp(θB),

whose unique solution with det exp(θB)
∣∣
θ=0

= 1 is given by equation (12). To help
make (12) more memorable, notice that it’s obvious when B is diagonal, because
then

det exp(θB) =
∏
n

exp
(
θBnn

)
(13)

exp(θ trB) = exp

(
θ
∑
n

Bnn

)
. (14)
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