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Field Operators for Nonrelativistic
Fermions and Bosons

Randy S

Abstract In quantum theory, observables are represented
by linear operators on a Hilbert space. In quantum field the-
ory (QFT), observables are expressed in terms of auxiliary
operators called field operators. Article 28477 introduced
a family of nonrelativistic models of spinless fermions and
bosons. This article explains how to express those models
in terms of field operators.
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1 Introduction

The models introduced in articles 20554, 41522, and 28477 each had a definite
number N of particles. In the real world, interactions with sufficient energy can
change the number of particles. A quantum model with that behavior generally
cannot have any definite number of particles, because if (say) a two-particle state
can change to a three-particle state, then superpositions of those two- and three-
particles states must also be allowed. Such a state has an indefinite number of
particles, a concept that has no good analog in classical physics.

As a step toward learning about such models, this article describes an easier
type of model, one that encompasses all different numbers of particles even though
it doesn’t have any interactions that change the number of particles.1 The Hilbert
space has mutually orthogonal subspaces, each with its own definite number N
of particles. These subspaces are called superselection sectors because they
are not mixed with each other by any of the model’s observables. However, the
model’s observables are all expressed in terms of field operators, which do mix
the superselection sectors with each other.2 The name quantum field theory (QFT)
alludes to operators like these.

The models constructed here are strictly nonrelativistic QFTs. In these models,
each superselection sector can be treated as a model all by itself, one with a definite
number of particles. The models constructed in articles 20554, 41522, and 28477
all arise this way,3 so those models can all be regarded as parts of the quantum
field theories constructed here.

Sections 4-14 introduce a model of a single fermion species. Section 15 con-
structs a model of a single boson species, as an easy modification of the fermion
case. Sections 16-17 generalize the construction to multiple species, each of which
may be fermionic or bosonic.

1It does have interactions that don’t change the number of particles.
2The reason for calling them field operators might not be apparent here. Much of the terminology in physics

comes from broad generalizations of special cases in which the words make more sense.
3Sections 12-13 demonstrate this for the case of a single fermion species.
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2 Using a lattice to keep the math clear

In classical physics, we normally treat space as a smooth manifold. Treating space
as a smooth manifold would be nice in QFT, too, except that in most cases we
don’t know how to do it. Even when we do know how, it involves some heavy
technical details. This article uses a more straightforward appraoch: this article
treats space as a discrete lattice (article 71852), one so fine that it might as well be
smooth as far as all currently-feasible experiments are concerned. This is clearly
artificial, and that’s okay, because the models introduced here aren’t supposed to
be complete or exact anyway.

Here’s a brief review to establish notation. The lattice is (hyper)cubic with K
points along each axis, so the total number of points is KD where D is the number
of dimensions of space. Each point has 2D nearest neighbors. Periodic boundary
conditions will be assumed. Let ε denote the lattice spacing, the distance between
nearest neighbors. The lattice version of an integral over all space is∫

x

f(x) ≡ εD
∑
x

f(x). (1)

The function

δ(x′ − x) ≡
{

1/εD if x = x′

0 otherwise
(2)

has the useful property ∫
x

δ(x′ − x)f(x) = f(x′).

The laplacian and the kth component of the gradient are defined by

∇2f(x) ≡
∑
k

f(x + ek) + f(x− ek)− 2f(x)

ε2
(3)

∇kf(x) ≡ f(x + ek)− f(x)

ε
(4)

where e1, e2, ..., eD are basis vectors for the lattice, each with magnitude ε.
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3 Constructing a Hilbert space from an algebra

We could describe the field operators by starting with a Hilbert space and then
specifying what the field operators do to it. However, sometimes an algebra-first
approach is easier: we can start with an abstract algebra of operators, and then we
can use the algebra to construct a Hilbert space on which the operators act.

To illustrate how this works, consider the very simple algebra generated by one
operator a and its adjoint a∗, satisfying the anticommutation relations

{a, a} = 0 {a, a∗} = 1. (5)

I’m using the standard notation

{A,B} ≡ AB +BA.

We can construct a Hilbert-space representation of these operators by starting with
a vector |0〉 that satisfies

a|0〉 = 0 〈0|0〉 > 0

and then using the algebra to define other vectors. We can’t get a new vector using
only a, because applying a to |0〉 gives zero, but we can get a new vector using a∗,
namely |1〉 ≡ a∗|0〉. The algebra implies that this new vector is nonzero, because
its inner product with itself is

〈1|1〉 = 〈1|a∗|0〉 = 〈0|a|1〉∗ = 〈0|aa∗|0〉∗

= 〈0|(1− a∗a)|0〉∗ = 〈0|0〉∗ = 〈0|0〉.

The algebra also implies that the new vector is orthogonal to |0〉:

〈0|1〉 = 〈0|a∗|0〉 = 〈0|a|0〉∗ = 0.

The two vectors |0〉 and a∗|0〉 span the whole Hilbert space, because any further
application of a or a∗ just mixes these two vectors with each other (or gives zero).
Altogether, we have constructed a complete representation of the abstract algebra
(5) on a two-dimensional Hilbert space.
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4 Single fermion species: framework

To construct a model of a single fermion species with zero spin, we only need one
field operator – that is, one operator a(x, t) for each point x in space and each time
t, together with its adjoint a∗(x, t).

The time-slice principle (article 22871) says that the field operators a(x, t)
for all times t should be expressible in terms of the field operators a(x, 0) at time
t = 0,4 so the algebra is generated the operators a(x) ≡ a(x, 0). Part of the model’s
definition is that these operators satisfy the anticommutation relations

{a(x), a(y)} = 0

{a(x), a∗(y)} = δ(x− y) (6)

for all points x,y in the spatial lattice, where δ(x − y) is the function that was
defined in section 2. Now we can use the algebra-first approach to construct a
Hilbert space, as illustrated in the previous section. Start with a vector |0〉 defined
by the conditions

a(x)|0〉 = 0 (7)

for all points x in the lattice, together with

〈0|0〉 > 0. (8)

To construct other vectors in the Hilbert space, consider vectors of the form

a∗(x1)a
∗(x2) · · · a∗(xN)|0〉 (9)

where x1, ...,xN is some list of N points in the lattice. Such a vector is nonzero
if all of the points xn are distinct. Applying the operators a(x) and a∗(x) to any
such vector gives another such vector (or gives zero). We can use the algebra (6)
together with (7)-(8) to infer the norms and inner products of all such vectors, as
illustrated in the previous section. In this way, we get a complete representation of
the abstract algebra (6) on a Hilbert space. The resulting Hilbert space has 2K

D

dimensions, where KD is the number of points in the spatial lattice.
4This will be done in sections 7 and 8.
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5 Single fermion species: observables

When a state is represented by a vector of the form (9), the integer N will be called
the charge of the state. For any given N , the set of all states with charge N is a(
KD

N

)
-dimensional subspace of the full 2K

D

-dimensional Hilbert space.
In the present model, the rule governing which operators represent observables

can be expressed concisely like this:

A self-adjoint operator represents as an observable if and only if
it doesn’t mix states with different charge.

The anticommutation relations (6) imply that applying the operator a(x) to a state
with charge N gives a state with charge N − 1, so a product of as and/or a∗s can
represent an observable only if the number of as in the product is equal to the
number of a∗s. Any observable is a linear combination of such products. Here are
a few examples:

• a∗(x)a(x) is an observable.

• a∗(x)a(y) + a∗(y)a(x) is an observable.

• The hamiltonian that will be defined in section 8 is an observable.

• a∗(x) + a(x) is not an observable.

Subspaces of the Hilbert space that are not mixed with each other by any of the
model’s observables are called superselection sectors. In this model, each su-
perselection sector consists of all states with a given charge N . We can treat each
superselection sector as a separate self-contained model, as in the articles cited in
section 1, but treating them all together – connected to each other by the field
operators – is often more convenient.
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6 Single fermion species: charge operator

The rule in section 5 can also be expressed like this: a self-adjoint operator repre-
sents an observable if and only if it commutes with the (total) charge operator

C ≡
∫
x

a∗(x)a(x). (10)

The operator C itself obviously satisfies this condition, so it is an observable. If

|ψ〉 = a∗(x1)a
∗(x2) · · · a∗(xN)|0〉, (11)

then the anticommutation relations (6) and equation (7) imply

C|ψ〉 = N |ψ〉.

In words: a measurement of the observable C represents a measurement of the
total charge, as defined in section 5.
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7 Single fermion species: local observables

Define time-dependent field operators by

a(x, t) = U−1(t)a(x)U(t) (12)

with U(t) ≡ exp(−iHt), where H is the hamiltonian that will be defined in section
8. For now, the only things we need to know about the hamiltonian are that it
is self-adjoint (H∗ = H) and that it doesn’t mix states with different charge. Use
equations (6) and (12) to see that the field operators satisfy these equal-time
anticommutation relations:

{a(x, t), a(y, t)} = 0

{a(x, t), a∗(y, t)} = δ(x− y). (13)

Section 5 (or 6) specified which operators represent observables. The next rule
specifies which observables are localized in which regions of spacetime:

An observable is localized in a spatial region R at time t if and
only if it can be expressed in terms of the field operators a(x, t)
with x ∈ R and their adjoints.

Together with the rule in section 5/6, this defines everything about the model
except for the hamiltonian H. The next section breathes life into the model by
specifying the hamiltonian, which specifies how everything behaves in time.5

The nonrelativistic version of a principle called microcausality (article 21916)
says that if two observables A and B are associated with non-overlapping regions
of space at the same time, then they should commute with each other: AB = BA.
The rules stated above are consistent with this, even though the individual field
operators a(x, t) and a(y, t) don’t commute with each other (they anticommute
instead).

5In other words, the hamiltonian specifies the model’s dynamics.
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8 Single fermion species: hamiltonian

Let ∇ denote a discrete version of the gradient with respect to x. In units with
~ = 1, the hamiltonian for the single-species model is

H = Hm +H∇ +Hint (14)

with6,7

Hm ≡ mc2

∫
x

a∗(x)a(x)

H∇ ≡
1

2m

∫
x

(
∇a(x)

)∗ · (∇a(x)
)

Hint ≡
1

2

∫
x,y

a∗(x)a∗(y)V (x− y)a(y)a(x) (15)

with m > 0 and V (x) ≥ 0. This completes the definition of the model. The
physical significance of m and V (x) can (in principle) be inferred by studying the
model’s behavior. The conclusion is that m is the mass of a single particle, and
V (x) specifies how the particles interact with each other.

Equation (12) says that the hamiltonian generates time evolution. According
to the rule in section 5/6, the hamiltonian defined by equations (14)-(15) is an
observable. By definition (article 22871), an observable that generates the model’s
time evolution represents the system’s total energy. Equation (7) implies

H|0〉 = 0. (16)

The conditions m > 0 and V (x) ≥ 0 ensure that every term in (15) is a positive
operator, and then equation (16) implies that |0〉 must be the lowest-energy state
(the vacuum state). Equation (16) also implies U(t)|0〉 = |0〉, and combining this
with (7) gives

a(x, t)|0〉 = 0. (17)

6The constant c relates mass to energy (section 13). We can call it the speed of light even though light is absent
in this model.

7The integral is defined as in section 2, with a factor of εD for each boldface summation variable.
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9 Observables that count particles

In principle, we should be able to define particles in terms of local observables that
detect them. This is usually difficult, but it is easy in some special cases. Strictly
nonrelativistic QFT is one of those special cases.

The usual idea of a particle is consistent with these criteria:

• Particles can be localized in space, at least approximately.

• Particles can be counted, at least when they’re far enough away from each
other to avoid complications.

• The lowest-energy state has none of them.

To be complete, the list of criteria should include something about how isolated
particles behave over time, but here we’ll focus on the criteria listed above.

Let R be a region of space, and consider the local observable

C(R, t) ≡
∫
x∈R

a∗(x, t)a(x, t) (18)

where the integral is over x ∈ R. According to the criteria listed above, we can
interpret this observable as counting the number of particles (or, less presumptu-
ously, the number of charges) in the region R at time t. To see this, consider the
state

|ψ〉 ≡ a∗(x1, t)a
∗(x2, t) · · · a∗(xN , t)|0〉. (19)

Suppose that n of the points x1,x2, ...,xN are within the region R and that the
remaining N − n point are not. Then the anticommutation relations (13) and
equation (17) imply8

C(R, t)|ψ〉 = n|ψ〉.
For any given t, states of the form (19) form a basis for the whole Hilbert space,9

so this suggests that the local observables C(R, t) count something and that the

8This shows that C(R, t) is the same as the counting observable defined in article 28477.
9To see this, recall the construction in section 4 and use the fact that the time evolution operator U(t) is unitary.
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lowest-energy state |0〉 has none of them. That’s only suggestive,10 but the inter-
pretation of C(R, t) as counting particles can be corroborated by studying how the
things it counts behave over time.11

In article 28477, each particle counting observable was expressed as a set of
mutually orthogonal projection operators, each corresponding to a specific number
of particles in the given region of space at the given time. We can do the same
thing here, because the observable (18) can be written as

C(R, t) =
∞∑
n=0

Q(n)(R, t)n

where Q(n)(R, t) is the projection operator onto the subspace consisting of all states
(19) (for all values of N) with exactly n of the points inside R. The observable
(18) is a convenient way of packaging this set of mutually orthogonal projection
operators into a single self-adjoint operator (article 03431). Each of the projec-
tion operators represents a possible outcome when this observable is measured.
Q(n)(R, t) represents the outcome “exactly n particles are in R at time t.”

When R is all of space, the observable (18) reduces to the total charge operator
(10), so the total charge operator also counts the total number of particles.12 It
commutes with all observables, including the hamiltonian, so∫

x

a∗(x, t)a(x, t) =

∫
x

a∗(x)a(x). (20)

10It really only shows that the operator (18) has a complete set of eigenspaces, one of which is spanned by |0〉.
As explained in article 03431, the eigenvalues of an observable don’t really matter (at least not for its specific role
as an observable – but some observables have other roles where the eigenvalues do matter), because nature doesn’t
care how we label the possible measurement outcomes. Instead of labeling the outcomes with real numbers, we could
label them with words, or colors, or sounds, or whatever.

11More carefully: it counts the total number of elementary particles. If V (x) < 0, even if |0〉 is still the vacuum
state, the model may also have composite particles that are not counted by these observables (article 89695).

12That’s a special feature of this model, not shared by most QFTs. Many QFTs have superselection sectors
characterized by different values of the total charge(s), but they usually don’t correspond to definite numbers of
particles. That’s why section 5 used the more generic word charge instead of number of particles, even though it did
turn out to be the same as the number of particles in this case.
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10 Fermions and the Pauli exclusion principle

Let f(x) be a complex-valued function, and define

a∗(f, t) ≡
∫
x

f(x)a∗(x, t).

Now consider the two-particle state

|ψ〉 ≡ a∗(f, t)a∗(g, t)|0〉.

The first equation in (13) implies that |ψ〉 can also be written

|ψ〉 = −a∗(g, t)a∗(f, t)|0〉

When f = g, this implies |ψ〉 = 0, which does not represent any state. (Only
nonzero vectors can be used to represent states.) This is the Pauli exclusion
principle. If we call f the “state” of a single particle (not to be confused with the
full two-particle state), then this says that two of the model’s particles cannot have
the same “state.” Particles that respect the Pauli exclusion principle are called
fermions.

The word fermion is also used more generally for a family of field operators
that anticommute with each other whenever they are localized in different regions
of space at the same time, even if they’re not related to particles as directly as they
are in the present model.

13



cphysics.org article 15939 2023-11-12

11 The Schrödinger picture

The previous sections used the Heisenberg picture, where observables are time-
dependent and states are not. Here we will switch to the Schrödinger picture
(article 22871), in which states are time-dependent and observables are not. Recall
how it works: let

A(t) = U−1(t)AU(t)

be any observable in the Heisenberg picture, where U(t) are the unitary time-
translation operators introduced in section 7. If we define a time-dependent version
of |ψ〉 by ∣∣ψ(t)

〉
≡ U(t)|ψ〉, (21)

then
〈ψ′|A(t)|ψ〉 =

〈
ψ′(t)

∣∣A∣∣ψ(t)
〉

for any two vectors |ψ〉 and |ψ′〉. These are two different ways of expressing the
same thing: the left-hand side is the Heisenberg picture, and the right-hand side is
the Schrödinger picture.

Using U(t) = e−iHt, the definition (21) implies

i
d

dt

∣∣ψ(t)
〉

= H
∣∣ψ(t)

〉
. (22)

This is the general Schrödinger equation. Section (13) derives a more explicit
version of the Schrödinger equation in the N -particle sector. That will show how
the hamiltonian defined in section 8 relates to the one defined in article 28477.
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12 The wavefunction for N particles

Let |ψ〉 be any N -particle state, which is any state of the form

|ψ〉 =

∫
x1,...,xN

ψ(x1, ...,xN)a∗(x1) · · · a∗(xN)|0〉. (23)

The quantities xn in (23) are dummy integration variables, so we if we exchange
two of them xj ↔ xk everywhere in the integrand, then we haven’t really changed
anything. The operators a(xj) and a(xk) anticommute with each other, so if we also
exchange a(xj) ↔ a(xk), then the only effect on (23) is an overall change of sign.
Altogether, this means that exchanging any two of the arguments of ψ(x1, ...,xN)
has the same effect on (23) as changing the overall sign. Therefore, we might as well
take the function ψ(x1, ...,xN) itself to be antisymmetric, meaning that it changes
sign whenever any two of its boldface arguments xj and xk are exchanged.

The corresponding time-dependent state in the Schrödinger picture is defined
by equation (21). In this model, time evolution doesn’t change the value of N , so
we can define the time-dependent N -particle wavefunction ψ(x1, ...,xN , t) by the
condition13 ∫

ψ(x1, ...,xN , t) a
∗(x1) · · · a∗(xN)|0〉 = |ψ(t)〉. (24)

Again, we can take the wavefunction to be antisymmetric under permutations of
its boldface arguments. Take the inner product of both sides of equation (24) with
the vector a∗(x1) · · · a∗(xN)|0〉 and use the relationships (13) and (17) to get

ψ(x1, ...,xN , t) =
〈0|a(x1) . . . a(xN)|ψ(t)〉

N ! 〈0|0〉
.

which is manifestly antisymmetric because the operators a(xn) anticommute with
each other. We can use this as another (equivalent) definition of the wavefunction.

13The rest of this section uses
∫

as an abbreviation for the integral over all of the boldface variables xn.
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13 The Schrödinger equation for N particles

We can use the general Schrödinger equation (22) to derive a differential equation
describing the time-dependence of the wavefunction. Start by taking the time-
derivative of both sides of (24) and use (22) to get

i
∂

∂t
ψ(x1, ...,xN , t) = i

〈0|a∗(x1) · · · a∗(xN) ddt|ψ(t)〉
N ! 〈0|0〉

=
〈0|a∗(x1) · · · a∗(xN)H|ψ(t)〉

N ! 〈0|0〉
. (25)

Now recall the expression (14) for H. The mass term Hm is proportional to the
operator (10) that counts the total number of particles, so

〈0|a∗(x1) · · · a∗(xN)Hm|ψ(t)〉
N ! 〈0|0〉

= Nmc2 〈0|a∗(x1) · · · a∗(xN)|ψ(t)〉
N ! 〈0|0〉

= Nmc2 ψ(x1, ...,xN , t).

For the gradient term H∇, the lattice version of integration-by-parts (article 71852)
implies

H∇ =

∫
x

a∗(x)
−∇2

2m
a(x), (26)

which is a special case of the general form

J ≡
∫
x,y

a∗(x)j(x− y)a(y).

For any such operator, the the anticommutation relations (13) and (17) imply

〈0|a(x1) · · · a(xN)J |ψ〉
N ! 〈0|0〉

=

∫
y

j(x1 − y)ψ(y,x2,x3, ...,xN , t)

+

∫
y

j(x2 − y)ψ(x1,y,x3, ...,xN , t)

+ and so on,

16
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where the pattern should be clear. For the special case (26), this gives

〈0|a(x1) · · · a(xN)J |ψ〉
N ! 〈0|0〉

=
N∑
n=1

−∇2
n

2m
ψ(x1, ...,xN , t)

where ∇n is the gradient with respect to xn. For the interaction term Hint, the
relations (13) and (17) imply

〈0|a(x1) · · · a(xN)Hint|ψ〉
N ! 〈0|0〉

=
∑
j<k

V (xj − xk)ψ(x1, ...,xN , t).

Altogether, this gives

i
∂

∂t
ψ(x1, ...,xN , t) =

Nmc2 +
N∑
n=1

−∇2
n

2m
+
∑
j<k

V (xj − xk)

ψ(x1, ...,xN , t).

(27)
This is the Schrödinger equation for the N -particle wavefunction. This matches
the Schrödinger equation for the single-species model constructed in article 28477,
except for the extra term Nmc2. This term represents the contribution of the
total mass (or rest energy) of the N particles to the total energy. A term like
this appears whenever a nonrelativistic model is derived as an approximation to a
relativistic model.14 This term can be important even in the purely nonrelativistic
context, because when the superselection sectors for different values of N are all
regarded as parts of a single quantum field theory, the mass term Nmc2 is necessary
for ensuring that the state with no particles is the lowest-energy state, especially
when the model may have states representing composite particles (section 18).15

14Article 77597 illustrates this in the case of a single classical particle.
15 If we didn’t account for the rest energy (mass), then a bound state of two particles could appear to have lower

energy than the state with no particles, because the binding energy is negative.
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14 Approximating continuous space

To avoid distracting mathematical technicalities, the preceding sections defined the
model using a discrete lattice for space. That’s clearly artificial: we have no reason
to think that space is anything like such a lattice. It’s also harmless, though,
because we can take the lattice spacing to be so tiny that the model’s predictions
for real experiments are completely insensitive to it.

More precisely, if we consider only states of sufficiently low energy,16 and if we
consider only observables that respect that constraint, then the model’s predictions
are not sensitive to the lattice spacing. The low-energy constraint works because
constraining the total energy implies constraining the contribution of the gradient
term H∇, and constraining the contribution of the gradient term H∇ is the same
as requiring the wavefunction (section 12) to vary only very gradually in space,
compared to the lattice spacing ε. Predictions that involve only such functions are
not sensitive to the lattice spacing ε.

We can take the continuum limit ε→ 0 of the N -particle Schrödinger equation
(27),17 but we can’t take ε → 0 in the algebra generated by the field operators
(equations (6)), because the function (2) that appears in that algebra is undefined in
that limit. The restriction to low-energy states described above achieves essentially
the same goal – namely eliminating lattice artifacts – without requiring ε→ 0.

16This requires that the coefficients in the hamiltonian (14) all have sufficiently small magnitudes – barring delicate
cancellations, which do occur in many interesting QFTs, but not in this one.

17This is why article 28477 didn’t treat space as a lattice.
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15 Single boson species

To construct a model of a single boson species with zero spin, we only need a slight
modification of the construction that was used for the fermion model: just replace
the anticommutation relations (6) with

[a(x), a(y)] = 0

[a(x), a∗(y)] = δ(x− y). (28)

I’m using the standard notation

[A,B] ≡ AB −BA.

The resulting Hilbert space is infinite-dimensional, even on a finite lattice, because
the Pauli exclusion principle does not apply: the charge N of a state can be ar-
bitrarily large, even on a lattice with only one point. The time-dependent field
operators satisfy the correspondingly modified version of (13), with anticommuta-
tors {·, ·} replaced by commutators [·, ·]. The rules used in sections 5-7 to specify
which operators can represent observables in which regions of spacetime are still
appropriate here.18 The hamiltonian is the same as in section 8, and the analysis
in section 9 is unchanged. The sign-change that led to the Pauli exclusion principle
in section 10 is absent in the boson case, so the state

a∗(f, t)a∗(f, t) · · · a∗(f, t)|0〉

is nonzero no matter how many factors of a∗(f, t) are applied, all with the same
f . The equations shown in sections 11-13 are unchanged, except that now the
wavefunction is symmetric instead of antisymmetric: it is invariant under arbi-
trary permutations of its boldface arguments. The comments about approximating
continuous space in section 14 are unchanged.

18In the bosonic case, the restriction imposed in section 5/6 could be relaxed without violating microcausality
(section 7), but the restriction in section 5/6 arises naturally when the model is derived as an approximation to a
more complete model in which the particles interact with each other via the electromagnetic field. In that context,
the charge N really is the total electrostatic charge, and gauge invariance requires that states with different total
electrostatic charge belong to different superselection sectors in the more complete model.
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16 Multiple species: field operators and hamiltonian

The generalization to multiple species is easy. Instead of just one field operator
a(x, t) (and its adjoint) at each point x at each time t, we have a separate field
operator as(x, t) for each species s. For any given species, the field operator algebra
is just like before, with anticommutators for fermions and commutators for bosons.
The field operators associated with different species s 6= s′ satisfy

[as(x, t), as′(y, t)] = 0 [as(x, t), a
∗
s′(y, t)] = 0

if at least one of the species is a boson, and they satisfy

{as(x, t), as′(y, t)} = 0 {as(x, t), a∗s′(y, t)} = 0

if both species are fermions. In the hamiltonian, each species can have a different
mass ms > 0, and each pair of species (same or different) can have a different
interaction function Vs,s′(x). Explicitly: H = Hm +H∇ +Hint with

Hm ≡
∑
s

msc
2

∫
x

a∗s(x)as(x)

H∇ ≡
∑
s

1

2ms

∫
x

(
∇as(x)

)∗ · (∇as(x)
)

Hint ≡
1

2

∑
s,s′

∫
x,y

a∗s(x)a∗s′(y)Vs,s′(x− y)as′(y)as(x).

Section 18 addresses the signs of the interaction functions Vs,s′.
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17 Multiple species: local observables

An observable is localized in a given region R at a given time t if and only if
it can be expressed entirely in terms of the field operators as(x, t) with x ∈ R,
together with their adjoints. The right way to generalize the rule in section 5/6
depends on the model’s heritage as an approximation to a more complete model.
The possibilities include:

• The model’s observables all commute with all of the single-species charge
operators

Cs ≡
∫
x

a∗s(x)as(x), (29)

for every s.

• The only restriction on the model’s observables is that they all commute with
the operator

C ≡
∑
s

∫
x

a∗s(x)as(x). (30)

This can be appropriate if all of the species are fermions (or all bosons) with
the same mass and same interactions, so that they are all related to each other
by symmetry,19 because then they can all be regarded as a single species with
multiple components.

Section 18 considers an important case that is intermediate between these two
possibilities. That case uses two species to represent electrons with nonzero spin
(footnote 19) and other species to represent various types of atomic nucleus.20 In
that case, observables should commute with the charge operator that is summed

19 In this model, the symmetry is an internal symmetry, meaning that it doesn’t mix observables associated
with different regions of spacetime. In a more complete model, which this one approximates, the symmetry could
come from a spacetime symmetry: the different species in this approximate model could correspond to different
spin-components of a single species in the more complete model.

20Accounting for the nonzero spin of a nucleus is not important in most applications of this model.
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over the two electron species (like (30)) and also with the individual charge oper-
ators for each nucleus species (like (29)). States that differ from each other in the
value of one or more of these charge operators belong to different superselection
sectors.
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18 The spectrum condition

The family of models defined in sections 16-17 includes an important special case,
defined by these conditions:

• Space is three-dimensional: D = 3.

• The interactions are Coulomb interactions: Vs,s′(x) = eses′/
(
4πε0|x|

)
.

• Two species,21 both called electrons, are fermions with equal values of es < 0
and the same single-particle mass m.

• The rest of the species, called nuclei, are fermions or bosons with es > 0 and
masses that are � m but otherwise arbitrary.

This model captures some of the qualities of electrons and nuclei that are most
important for matter under ordinary conditions.22 Article 28477 mentioned that if
the rest energy term Hm is ignored, then the lowest possible energy E0 of a system
with N− electrons of charge e− and N+ nuclei is bounded by23

E0 ≥ −κ(N− +N+) with κ ∼ me4
−/(ε0~)2. (31)

The lower bound is negative because the model ignores the particles’ rest energies
(footnote 15). If the rest energy term Hm is included, then the bound becomes

E0 ≥ mc2N− +mnucleusc
2N+ − κ(N− +N+).

Now increasing the number of particles increases the total energy, becausemc2 � κ,
with an even more extreme inequality for the N+ terms. This ensures that the
model satisfies the spectrum condition (article 21916) even when all superselection
selectors are included, and it ensures that the state with no particles has the lowest
energy overall, as it should (section 9).

21The two species account for the electron’s spin (footnote 19).
22It doesn’t include electromagnetic interactions (except for the static Coulomb interactions), but it can still exhibit

complex phenomena that resemble real molecules, fluids, and solids.
23When every nucleus is a single proton and N+ = N−, equation (55) in Lieb (1976) says E0 ≥ −κN− with κ = 23

times the Rydberg energy. This excludes the protons’ kinetic energy, which can only increase the lower bound.
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