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Spherical Harmonics
Randy S

Abstract Spherical harmonics are special functions that
can be used to contruct representations of the rotation
group. This article presents an easy way to construct all
spherical harmonics in D-dimensional space for any D ≥ 3,
without using spherical coordinates.
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1 Notation

A point in D-dimensional euclidean space will be denoted

x = (x1, ..., xD).

The gradient with respect to x will be denoted

∇ = (∇1, ..., ∇D)

where ∇k is the partial derivative with respect to xk:

∇k ≡
∂

∂xk
.

The abbreviations
r ≡ |x| u ≡ x

r

will be used, and the identity x · ∇rn = nrn is often useful. When the number of
spatial dimensions is D = 3, subscripts will be avoided by using the notation

x = (x, y, z)

for the components of x.
Throughout this article, the word operator is used as an abbreviation for

differential operator. For two operators A and B, the standard notation

[A,B] ≡ AB −BA
{A,B} ≡ AB +BA

will be used. These are called the commutator and anticommutator, respec-
tively.
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2 The generators of rotations

The operator
Ljk ≡ xj∇k − xk∇j (1)

satisfies
Ljk r = 0.

We can think of Ljk as the derivative with respect to an angle, namely the angle
about the origin (the point x = 0) in the j-k plane.

The operator Ljk generates rotations about the origin in the j-k plane, in this
sense: for any function f(x), the new function

fφ(x) ≡ exp(φLjk)f(x) (2)

is a rotated version of the original, with rotation angle φ. To prove this, use the
abbreviations c ≡ cosφ and s ≡ sinφ, and consider the function

fφ(x) = f(cx1 − sx2, sx1 + cx2, x3, x4, ...). (3)

This function clearly satisfies

fφ=0(x) = f(x), (4)

and it also satisfies
d

dφ
fφ(x) = L12 fφ(x) (5)

because both sides are equal to

(−sx1 − cx2)f1 + (cx1 − sx2)f2

where fn is the derivative of the right-hand side of (3) with respect to its nth
argument. Equations (4)-(5) are the definition of the right-hand side of (2) when
j, k = 1, 2. The same idea works for other index-pairs j, k, too. This completes the
proof.

Since Ljk generates rotations about the origin, a function f(x) is invariant
under rotations about the origin if and only if Ljkf = 0 for all j, k. In particular,
Ljkr = 0.

4



cphysics.org article 12883 2023-11-12

3 An invariant combination of generators

The operators Ljk don’t commute with each other, but they all commute with the
operator

L2 ≡ 1

2

∑
j,k

L2
jk. (6)

To prove this, start with the fact that two Ljks fail to commute only when they
have exactly one subscript in common,1 such as L12 and L23. Use the definition (1)
to confirm the identity

[L12, (L23)
2] = {L13, L23}.

Permute subscript-values to get

[L12, (L13)
2] = −[L21, (L13)

2] = −{L23, L13}.

Two results together imply [L12,L
2] = 0. The general case

[Ljk,L
2] = 0 (7)

follows by permuting the subscripts.

1For D ≥ 4, some Ljks don’t have any subscripts in common, like L12 and L34. Such Ljks commute with each
other, which should be obvious from the definition (1).
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4 Spherical harmonics: motivation

Let Y (x) denote a function that is defined for all r > 0 and that satisfies the
conditions

x · ∇Y = 0 L2 Y ∝ Y. (8)

Here’s some intuition about these conditions:

• The first condition says that Y is invariant under x → κx for all κ 6= 0. In
other words, it says that Y depends only on angles about the origin – that
is, only on the unit vector u ≡ x/r. We can think of Y as a function defined
on the surface of the unit sphere.2

• The second condition in (8) says that Y is an eigenfunction of L2. The
proportionality factor is called the eigenvalue. The operators Ljk generate
rotations about the origin (section 2), so equation (7) implies that eigen-
functions of L2 with different eigenvalues don’t mix with each other under
rotations about the origin.

When seeking solutions f(x) of a rotation-symmetric partial differential equation,
the ansatz f(x) = ρ(r)Y (x) is often helpful. The first condition in (8) says that
the factor ρ(r) accounts for all of the r-dependence, and the second condition in
(8) says something about how the solution transforms under rotations.

The conditions (8) are often used as the definition of the class of functions
called spherical harmonics. This article uses a different but equivalent definition,
introduced in section 6.

2Such functions can also be described using spherical coordinates. Spherical coordinates have the virtue of
being non-redundant (the number of coordinates is the same as the number of dimensions of the surface of the
sphere), but they are not defined at all points on the surface of the sphere, and they obscure spherical symmetry:
the way they transform under rotations is a horrific mess. Using x/r to parameterize the unit sphere is often easier,
even though it’s redundant (it uses D coordinates, whereas the surface of the unit sphere has only D−1 dimensions),
because x/r is defined everywhere on the unit sphere and transforms in a very simple way (namely linearly) under
all rotations about the origin.
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5 Harmonic polynomials

Spherical harmonics will be defined in terms of special polynomials called harmonic
polynomials. A polynomial g(x) in the components of x is called homogeneous
if

g(κx) = κ`g(x) (9)

for some nonnegative integer ` called the degree of the polynomial. This implies

x · ∇g = `g. (10)

A harmonic polynomial is a homogeneous polynomial h(x) that satisfies

∇2h = 0. (11)

The differential operator

∇2 ≡
∑
k

∇2
k

is called the laplacian. This notation will be used:

• P` is the vector space3 of homogeneous polyonomials of degree `.

• H` ⊂ P` is the vector space3 of harmonic polyomials of degree `.

In both cases, the number of real variables is understood to be D, the number of
components of x.

3 This is a vector space because any linear combination of such polynomials is another such polynomial.
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6 Spherical harmonics: definition

A spherical harmonic of degree ` is a function of the form

Y (x) =
h(x)

r`
with h ∈ H`. (12)

Section (7) derives equations (8) as consequences of the definition (12). The con-
verse can also be proved: the conditions (8) imply (12).4

Using the definition (12), section 8 highlights a relatively easy way to construct
spherical harmonics, and sections 9-10 show that every spherical harmonic is a
linear combination of those.

4This is part (1) of theorem 1.9 in Gallier (2013), section 1.4, page 28.
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7 Derivation of (8) from (12)

The laplacian can be expressed in terms of the operators x · ∇ and Ljk, which are
derivatives in radial and angular directions, respectively. Explicitly,

r2∇2 = (D − 2 + x · ∇)x · ∇+ L2. (13)

To derive this, use the definitions (1) and (6) to evaluate L2 in terms of ∇2 and
x ·∇. By the way, the same result may be written in terms of u ·∇ instead of x ·∇.
To do this, use the identity

(x · ∇)2 = r2(u · ∇)2 + x · ∇

to get

∇2 =

(
D − 1

r
+ u · ∇

)
u · ∇+

1

r2
L2. (14)

This version might be more familiar than (13).
The goal is to prove that any function of the form (12) satisfies both of the

conditions (8). The first condition in (8) is equivalent to invariance under x→ κx,
so the fact that (12) satisfies the first condition in (8) is clear from the fact that h
is homogeneous (equation (9)). To show that function (12) also satisfies the second
condition in (8), use equations (10), (11), and (13) to get

L2h = −`(`+D − 2)h,

and combine this with Ljk r = 0 to get5

L2 Y = −`(`+D − 2)Y. (15)

This shows that Y satisfies the second condition in (8). This completes the proof.

5When D = 3, equation (15) reduces to L2 Y = −`(`+1)Y , a result highlighted in many introductions to quantum
mechanics.
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8 Constructing harmonic polynomials

Suppose D ≥ 3.6 Then, for any list of ` indices a, b, c, ..., the function

h(x) = r2`+D−2∇a∇b∇c · · ·
1

rD−2
(16)

is a harmonic polynomial of degree `. The fact that it is a polynomial of degree `
should be clear by inspection. This section shows that it also satisfies the harmonic
condition 11.7

Use the abbreviation

s ≡ ∇a∇b∇c · · ·
1

rD−2
, (17)

with ` gradients, so that equation (16) becomes

h(x) = r2`+D−2 s.

Start with the identity

∇2h = r2`+D−2∇2s+ s∇2r2`+D−2 + 2(∇r2`+D−2) · ∇s. (18)

The first term on the right-hand side is zero because ∇2(1/rD−2) = 0 for all r > 0.
To evaluate the second term on the right-hand side of (18), use

∇2r2`+D−2 = (2`+D − 2)∇ · (xr2`+D−4)

= (2`+D − 2)(D + 2`+D − 4)r2`+D−4.

To evaluate the third term on the right-hand side of (18), use

(∇r2`+D−2) · (∇s) = (2`+D − 2)r2`+D−4x · ∇s
= (2`+D − 2)(2−D − `)r2`+D−4s.

Combine these intermediate results to get the final result ∇2h = 0.
6For D = 2, use log r in place of 1/rD−2.
7This is lemma 5.15 on page 86 in Axler et al (2020), also expressed in words on page 85.
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9 Completeness

If D ≥ 3, then every harmonic polynomial of degree ` can be written as a linear
combination of polynomials of the form (16). This is proved in Axler et al (2020).
Here’s an outline:8

• Given a function u(x) defined for all r > 0, its Kelvin transform9 is defined
to be r2−Du(x/r2). In particular, the Kelvin transform of the function (17)
is the function (16).10

• If p(x) is a polynomial, then the polynomial r2p(x) cannot be harmonic.11

• If ` ≥ 2, then every polynomial in P` can be written12 p(x) = h(x) + r2p′(x),
where h ∈ H` and p′ ∈ P`−2, and this decomposition is unique.13 This defines
the canonical projection of the space of homogeneous polynomials into the
space of harmonic polynomials.

• If D ≥ 3, then the Kelvin transform of any linear combination of functions
of the form 17 is proportional to the canonical projection of the same lin-
ear combination of the corresponding monomials xaxbxc · · · (using the same
index-values) into the space of harmonic polynomials.14

• Altogether, this implies15 that every every harmonic polynomial of degree `
can be written as a linear combination of polynomials of the form (16).

8This outline is based on Axler et al (2020), which is available on-line for free. A similar proof is given in Vilenkin
(1968), chapter 9.

9Axler et al (2020), pages 59 and 61
10This can be deduced without calculating the gradients. Just use the fact that (17) is a homogeneous polynomial

of degree ` (in the components of x) divided by r2−D+2`.
11Axler et al (2020), corollary 5.3 on page 75, and Vilenkin (1968), chapter 9, section 2, page 444
12Axler et al (2020), proposition 5.5 on page 76
13Axler et al (2020), page 76. Vilenkin (1968) says it this way (chapter 9, section 2, page 444): if ` ≥ 2, then P`

is the direct sum of H` and r2P`−2.
14Axler et al (2020), theorem 5.18 on page 88
15Axler et al (2020), page 92.
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10 Constructing spherical harmonics

Combining (12) and (16) to get

Y (x) = r`+D−2∇a∇b∇c · · ·
1

rD−2
(with ` gradients). (19)

The results in sections 8-9 imply that when D ≥ 3, every spherical harmonic of
degree ` is a linear combination of these.

For D ≥ 3, the function 1/rD−2 satisfies

∇2 1

rD−2
= 0 for r > 0.

For D = 2, the corresponding relationship is ∇2 log r = 0 for r > 0. Replacing
1/rD−2 with log r in the formula (19) gives spherical harmonics for D = 2. This
article is mostly concerned with D ≥ 3.
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11 Examples

Up to proportionality, there is one spherical harmonic of degree ` = 0, namely
Y ∝ 1. For degrees ` > 0, straightforward evaluation of derivatives gives

∇a
1

rD−2
= (2−D)

xa
rD

∇a∇b
1

rD−2
= (2−D)

δabr
2 −Dxaxb
rD+2

∇a∇b∇c
1

rD−2
= (2−D)D

(2 +D)xaxbxc − (xaδbc + xbδca + xcδab)r
2

rD+4

and so on. Therefore, according to the formula (19), the spherical harmonics for
the first few degrees ` = 1, 2, 3 are

Ya(u) ∝ xa
r

Yab(u) ∝ Dxaxb − δabr2

r2

Yabc(u) ∝ (2 +D)xaxbxc − (xaδbc + xbδca + xcδab)r
2

r3
.

The number of linearly independent spherical harmonics is shown below for the
first few degrees `:

` # lin indep # lin indep when D = 3
0 1 1
1 D 3
2 (D2 +D − 2)/2 5
3 (D3 + 3D2 − 4D)/6 7

The general result is given as a function of D and ` in Axler et al (2020), proposition
5.8 on page 78.
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12 Examples for D = 3

Equation (8) says that spherical harmonics are eigenfunctions of L2. We may
choose a basis for the set of spherical harmonics so that each basis function is also
an eigenfunction of L12, because L12 commutes with L2 (section 3). When D = 3,
the eigenvalues of L2 and L12 specify the function completely, up to proportionality.

In this section, set D = 3 and let Y`,m denote a spherical harmonic of degree `
that satisfies

L12Y`,m = imY`,m.

For the first few degrees `, the solutions are16

` = 1 : r Y11 ∝ x+ iy

r Y10 ∝ z

` = 2 : r2 Y22 ∝ (x+ iy)2

r2 Y21 ∝ (x+ iy)z

r2 Y20 ∝ 3z2 − r2

` = 0 : Y00 ∝ 1

` = 3 : r3 Y33 ∝ (x+ iy)3

r3 Y32 ∝ (x+ iy)2z

r3 Y31 ∝ (x+ iy)(5z2 − r2)

r3 Y30 ∝ (5z2 − 3r2)z

together with Y`,−m = Y ∗`m. To construct Y`m for any ` and any m ≥ 0, start with

r` Y`m ∝ (x+ iy)m h(z, r2)

where h(z, r2) is a homogeneous polynomial of order ` − m in z and r with only
even powers of r. This automatically satisfies ∂φY`m = im Y`m. Now just solve

∇2(r` Y`m) = 0

for the integer coefficients in the polynomial h(z, r2).

16In this section, the components of x are written as (x, y, z) instead of (x1, x2, x3). The functions displayed here
are often written in terms of angles φ and θ defined by x+ iy = r exp(iφ) and z = r cos θ.
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13 Representations of the rotation group

The group of rotations about the origin in D-dimensional space is the special
orthogonal group SO(D).17 In a representation of the rotation group on a
vector space V , each rotation acts as a linear transformation of V (article 29682).

When V is the vector space H` of harmonic polynomials of degree `, we have a
natural representation in which the effect of a rotation R on h(x) ∈ H` is18

h(x)→ h(Rx), (20)

where
x→ Rx (21)

is the usual effect of a rotation on x. Using the definition (12), this gives an
equivalent representation of the rotation group on the vector space of spherical
harmonics of degree `, because the denominator in (12) is invariant under (21).

17The orthogonal group O(D) also includes reflections.
18This transformation preserves the degree ` because (21) is linear, and it preserves the harmonic condition (11)

because the laplacian ∇2 is invariant under (21).
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14 Are the representations irreducible?

A representation of a group on a vector space V is called irreducible if V does not
have any nontrivial subspace that is self-contained under the action of the group.
According to Vilenkin (1968), the representation of SO(D) on H` defined by (20)
is irreducible if D ≥ 3. Vilenkin (1968) doesn’t quite say that directly, but it’s
implied by these statements from Vilenkin (1968), chapter 9, section 2, where the
proofs are worked out in detail:19,20

• Page 441: SO(D) acts irreducibly on the quotient space P`/r
2P`−2.

• Page 445: The representation of SO(D) on P`/r
2P`−2 is equivalent to its

representation on H`.

Altogether, this says that the representation defined by (20) is irreducible, and
therefore so is the equivalent representation on the space of spherical harmonics of
degree `.

19These statements don’t specify any restriction on D, but the restriction D ≥ 3 is acknowledged on pages 452-453
in the same section.

20The page numbers refer to Vilenkin (1968).
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15 Other irreducible representations

SO(D) has other irreducible representations that are not equivalent to any of the
representations defined by (20) on the space of harmonic polynomials (or spherical
harmonics). Any homogeneous polynomial of degree ` may be written∑

a,b,c,...

Aabc···xaxbxc · · · (with ` indices), (22)

where the coefficients Aabc··· are complex numbers. Applying a rotation R to the
coordinates, as in (21), is the same as applying the transformation

Aabc··· →
∑

a′,b′,c′,...

Aa′b′c′···Ra′aRb′bRc′c · · · (23)

to the coefficients, where Rab is the rotation matrix defined by (Rx)a =
∑

bRabxb. A
representation defined by (20) corresponds to a representation defined by (23) with
special constraints on the coefficients. We can get new irreducible representations
of the form (23) by imposing different constraints on the coefficients. Some of them
are equivalent to one of the representations defined by (20), but some are not.21

An example is the representation of SO(D) on the set of antisymmetric matri-
ces, Aab = −Aba. The corresponding polynomials (22) are zero, but the transforma-
tions (23) still define a nontrivial representation of SO(D), one that is not expressed
in terms of polynomials. For D = 3, this antisymmetric representation doesn’t give
us anything new: it’s equivalent to the representation defined by (20) with ` = 1
(article 81674). In contrast, for D = 4, it does give us something new. It gives
a reducible representation containing two irreducible subrepresentations, in which
the coefficients satisfy either of the additional constraints Aab = ±

∑
cd εabcdAcd,

where εabcd is completely antisymmetric. These are often called the self-dual and
anti-self-dual representations, respectively. Neither one of them is equivalent to
any of the representations defined by (20).

21Fulton and Harris (1991) introduces a systematic approach to constructing all irreducible representations of a
finite-dimensional Lie group on finite-dimensional real and complex vector spaces. The case of SO(D) is addressed
in theorem 19.22 and chapter 26.
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