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Rotational Motion in
Higher-Dimensional Space

Randy S

Abstract This article derives the relationship between
the angular momentum and angular velocity of a rigid
body in D-dimensional space.
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1 Review: momentum and angular momentum

As in article 33629, consider a system of pointlike objects with masses mk whose
locations xk in D-dimensional space are governed by the equations of motion1

mkẍk = −∇kV, (1)

where V is a function of the locations xk. The index k runs from 1 to K, where
K is the number of objects. Suppose that V is invariant under translations and
rotations. The condition that V is invariant under translations can be written∑

k

∇kV = 0,

which implies that the total momentum

Ptotal ≡
∑
k

mkẋk (2)

is conserved. The condition that V is invariant under rotations about any given
time-independent center point c can be written∑

k

(xk − c) ∧∇kV = 0,

which implies that the total angular momentum about c,

Ltotal ≡
∑
k

(xk − c) ∧ (mkẋk), (3)

is conserved. The ∧ notation was defined in article 33629. An equivalent definition,
which will be more convenient in this article, is

a ∧ b ≡ abT − baT (4)

where a is represented as a single-column matrix, and so is b. In this representation,
a∧ b is an antisymmetric D×D matrix. It is nonzero only if a and b are linearly
independent.

1 Each overhead dot is a derivative with respect to time.
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2 Describing the motion of a rigid body

For the rest of this article, suppose that the distance between each pair of objects
is fixed,2 so that the system describes a single rigid object whose total mass is
distributed among K points xk, with mk the mass associated with point xk. Our
goal is to write the conserved quantities (2) and (3) in a way that is more convenient
for studying the motion of such a a rigid object.

In D-dimensional space, a rotation is described by a D×D matrix R satisfying

RRT = RTR = 1 detR = 1. (5)

The “1” in the first equation is the identity matrix, the superscript T means trans-
pose, and “det” means determinant. Define the center of mass:

x =
∑
k

mkxk

m
with m ≡

∑
k

mk. (6)

The assumption that the body is rigid means that we can write

xk = Rbk + x (7)

where R is a time-dependent rotation matrix and bk is the initial location of the
kth mass relative to the center of mass. Equations (6)-(7) imply∑

k

mkbk = 0. (8)

By definition, bk is independent of time, so all of xk’s time-dependence comes from
R and x.

2 In a model of the form (1), this can be achieved by choosing V to be have an enormous magnitude whenever
any of the distances deviates significantly from its nominal value, but we won’t need to do that here. In this article,
equation (1) serves only to motivate the idea that (2) and (3) are conserved. The rest of this article treats those
conservation laws as axioms.
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3 Angular momentum and angular velocity

Use equation (7) to see that the total angular momentum (3) is

Ltotal =
∑
k

mk(Rbk + x− c) ∧ (Ṙbk + ẋ),

and then use (8) to reduce this to

Ltotal = L+ (x− c) ∧Ptotal

with
L ≡

∑
k

mk(Rbk) ∧ (Ṙbk). (9)

The quantity L is the angular momentum of the body about its own center of mass,
and the remainder (x− c) ∧Ptotal is the angular momentum of the center of mass
about the arbitrary point c.

Take the time-derivative of the identity RRT = 1 to see the matrix W ≡ −ṘRT

is antisymmetric, and then use RTR = 1 to get Ṙ = −WR. The matrix W is
called the angular velocity. Like the angular momentum L, the angular velocity
is an antisymmetric matrix.3 Use equations (4) and (9) to see that the angular
momentum L can be written in terms of the angular velocity W like this:

L = MW +WM (10)

where M is the symmetric matrix

M ≡ RM0R
T M0 ≡

∑
k

mkbkb
T
k . (11)

The matrix M (or its initial value M0) describes the object’s rotational inertia,
just like its total mass

∑
kmk describes is linear inertia. Section 5 explains how

M is related to the traditional moment of inertia tensor when D = 3.
3 When D = 3, a D×D antisymmetric matrix happens to have 3 independent components, which the traditional

formulation arranges into a “vector” – a trick that only works for D = 3.
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4 Kinetic energy

The total kinetic energy is

E =
1

2

∑
k

mkẋ
2
k.

Use (7) and (8) to get

E =
1

2
Trace(ṘM0Ṙ

T ) +
1

2
mẋ2.

Use the definitions of W and M to see that this may also be written

E =
1

2
Trace(WMW T ) +

1

2
mẋ2, (12)

and use (10) and ṘRT +RṘT = 0 to see that it may also be written

E =
1

4
Trace(W TL) +

1

2
mẋ2. (13)

This shows that the kinetic energy is the sum of two terms: the first term is the
part due to the object’s rotational motion about its center of mass, and the second
term is part due to the motion of the center of mass.
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5 The traditional formulation in 3d space, part 1

The formulation described in the preceding sections works in D-dimensional space
for any D. In that formulation, the angular momentum L and angular velocity W
are represented by antisymmetric D ×D matrices. Such a matrix has

(D − 1)D

2

independent components, which is the number of components above the diagonal.4

When D = 3, the number of independent components is 3. The traditional formu-
lation uses this coincidence to treat the angular momentum and angular velocity as
though they were vectors, even though they’re really not.5 To relate the preceding
formulation to the traditional one, write the components of L and W as

L =

 0 L3 −L2

−L3 0 L1

L2 −L1 0

 W =

 0 W3 −W2

−W3 0 W1

W2 −W1 0

 (14)

and write the components of the rotational inertia matrix M as

M =

M11 M12 M13

M12 M22 M23

M13 M23 M33

.
Then equation (10) is equivalent to

Lj =
∑
k

IjkWk Ijk ≡ Trace(M)δjk −Mjk.

The matrix Ijk is the traditional moment of inertia tensor.

4 The components below the diagonal are the negatives of these, and the diagonal components are zero.
5 Traditional texts acknowledge this by calling them axial vectors or pseudovectors (section 6)
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6 The traditional formulation in 3d space, part 2

The traditional formulation in three-dimensional space uses a construct called the
cross product. Given two vectors a and b, their cross product

c ≡ a× b (15)

is an axial vector. It’s called an axial vector because it doesn’t transform like a
vector under reflections, but it does transform like a vector under rotations. In
matrix notation, if a→ Ra and b→ Rb, then c→ Rc. In other words, equation
(15) implies

Rc = (Ra)× (Rb) (16)

for all rotations R. This works even though the left-hand side has only one factor of
R and the right-hand side has two factors of R. The proof uses detR = 1 (equation
(5)).

As explained in article 81674, this has a generalization to any number of dimen-
sions D, but using the wedge product in place of the cross product. For general D,
the wedge product of two vectors doesn’t have the same number of components as
a vector, but the wedge product of D−1 vectors does. The wedge product of D−1
vectors transforms under rotations just like a single vector does, again because
detR = 1.6 The result (16) becomes a special case of this after the components of
a∧ b = abT − baT are arranged into an (axial) vector as shown in equations (14).

In contrast, quantities like angular momentum, angular velocity, and torque
do not transform like vectors when D 6= 3. They obviously can’t, because they
don’t even have the same number of components as a vector when D 6= 3. Those
quantities are always bivectors: they transform under rotations like a ∧ b does,
for two vectors a,b, with two factors of R, not with D− 1 factors of R. These are
the same thing only in the special case D = 3.

6 This becomes obvious when the determinant is defined using the wedge product, as explained in article 81674.
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