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Classical Scalar Fields
in Curved Spacetime

Randy S

Abstract This article introduces classical field theory in
a curved spacetime background, using a scalar field as an
example. The use of a general background metric enables
defining the Hilbert stress-energy tensor. The canonical
stress-energy tensor that was introduced in in article 49705
is associated with the translation symmetry of flat spacetime
via Noether’s first theorem, whereas the Hilbert stress-energy
tensor arises naturally from the equation of motion for the
metric field in general relativity. Article 32191 explains why
these two differently-defined stress-energy tensors are consis-
tent with each other.
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1 Two stress-energy tensors: canonical and Hilbert

Article 49705 introduced what I’ll call the canonical stress-energy tensor, a
collection of conserved currents associated with spacetime translation symmetry
via Noether’s (first) theorem. For a system of fields with components φn, the
canonical stress-energy tensor is

T ab(x) =
∑
n

δL(x)

δ ∂aφn(x)
∂bφn(x)− gabL(x), (1)

where L is the lagrangian1 and gab are the components of the (inverse) spacetime
metric, which must be independent of the coordinates in a model with translation
symmetry. This article introduces the Hilbert stress-energy tensor

T ab(x) ≡ −2√
| det g(x)|

δS

δgab(x)
, (2)

where S is the action and | det g| is the magnitude of the determinant of the metric.
This definition works naturally even in curved spacetime, where translation sym-
metry is absent. This article highlights a different kind of symmetry that leads to
a covariant conservation law for (2) even when spacetime is curved. It reduces
to the usual local conservation law when spacetime is flat.

Even though they’re both called stress-energy tensors,2 their definitions are
different. When spacetime is flat, the canonical and Hilbert stress-energy tensors
can both be defined, but they may or may not be equal to each other, depending
on the model.3 The Hilbert stress-energy tensor has nicer properties:4 it is au-
tomatically symmetric (T ab = T ba), and it is automatically invariant under gauge
transformations in the context of electrodynamics.

1This expression for T ab assumes that L depends only on the fields and their first derivatives.
2Here, the word tensor is being used as an abbreviation for tensor field (article 09894).
3 They can often be made equal to each other by exploiting the non-uniqueness highlighted in the next section.
4The stress-energy tensor defined by (1) also has these properties in the special case studied in article 49705, but

not in some other models like electrodynamics.
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2 Non-uniqueness of the stress-energy tensors

The canonical and Hilbert stress-energy tensors are both non-unique:

• In a model with translation symmetry, Noether’s theorem gives ∂aT
ab = 0

whenever the fields satisfy their equations of motion. But Noether’s theorem
only gives an expression for ∂aT

ab, not for T ab itself, so the canonical stress-
energy tensor (1) is not unique.5

• To define the Hilbert stress-energy tensor, we need to specify how the model
depends on the spacetime metric. Even if we only care about the flat-
spacetime case, we still need to temporarily generalize the model to arbitrary
not-quite-flat metrics. This can be done in more than one way, and the out-
put of the definition (2) depends on which generalization we choose. Section
7 shows that this dependence can persist even after specializing the result to
flat spacetime.

In this article, the metric field is a prescribed background field. This means that
the metric field is not influenced by anything else in the model: it is exempt from
the action principle. I like to call this generalized special relativity (article
33547).6 Contrast this to general relativity, where the metric field is subject
to the action principle: it both influences and is influenced by the model’s other
dynamic entities. In general relativity, the arbitrary choice that would have made
T ab non-unique is no longer a choice at all, because the metric field’s behavior is
governed by the model’s own equations of motion instead of being prescribed.

5Noether’s theorem associates translation symmetry with an expression of the form ∂aT
ab that is zero whenever

the fields satisfy their equations of motion. If Kab is such that ∂aK
ab is identically zero (without using the equations

of motion), then T ab +Kab is another conserved quantity that is still associated with translation symmetry, because
Noether’s theorem can’t tell the difference between T ab and T ab +Kab.

6This name is not standard. It doesn’t have a standard name, except maybe “physics in curved spacetime.”
Sometimes it’s even called general relativity, but that name is often reserved for the case where the metric field is
subject to the action principle, as stated in the text.
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3 Scalar field in curved spacetime

Let gab(x) be the components of a prescribed metric field with lorentzian signature,
and let N be the number of spacetime dimensions (normally N = 4). Consider the
model of a single scalar field φ with action

S =

∫
dNx

√
| det g| L L ≡ gab(∂aφ)(∂bφ)

2
− V (φ), (3)

where gab is a prescribed background metric field. When the metric is flat, (3)
reduces to the action that was used in article 49705.7

We can better appreciate the structure of (3) by starting with the coordinate-
free definitions of tensor fields reviewed in article 09894. The quantities ∂aφ are the
components of the differential of the scalar field φ. In a coordinate representation,
the differential of φ is

dxa ∂aφ. (4)

This is (the coordinate representation of) a one-form field. The combination

gab(∂aφ)(∂bφ)

is (the coordinate representation of) the scalar field formed from the (inverse) metric
field and two copies of the one-form field (4). The quantity V (φ) is also a scalar
field, which is clear because it doesn’t involve any derivatives. The integration
measure dNx changes when the coordinate system is changed, but the combination
dNx

√
| det g| does not, so an integral of the form

∫
dNx

√
| det g| L(x) has this

same form in every coordinate system if L is a scalar field. In particular, (3) has
the same form in every coordinate system. This ensures that the stress-energy
tensor obtained from the definition (2) has a natural coordinate-free meaning as a
tensor field.

7Equation (3) is not the only way to generalize the flat-spacetime version to curved spacetime.
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4 The equation of motion

In this model, the influence is assumed to be only one-way: the metric field influ-
ences the scalar field, but not conversely. This means that the model’s equations
of motion include

δS

δφ
= 0 (5)

but not δS/δgab = 0, which would be the equation of motion for the metric field if
the influence went both ways (as it does in general relativity). For the action (3),
equation (5) is equivalent to the Euler-Lagrange equations (article 49705)

∂a
δL̂

δ ∂aφ
=
δL̂

δφ
(6)

with8

L̂ ≡
√
| det g|L. (7)

Use (7) in (6) to get the explicit equation of motion

∂a

(√
| det g| gab∂bφ

)
+
√
| det g|V ′(φ) = 0. (8)

This equation governs the behavior of the scalar field in this model.
The way equation (8) depends on the metric g might have been hard to guess if

we had tried to directly generalize the flat-spacetime equation of motion. We might
have tried a derivative term like gab∂a∂bφ instead, but this combination does not
correspond to a tensor field. Directly generalizing the equation of motion is easier
using the concept of a covariant derivative ∇a. This will be done in section 6.

8In Forger and Römer (2003), on pages 20 and 43, the quantity L in equation (3) is called the lagrangian
function, the quantity L̂ defined in (7) is called the lagrangian density, and L̂ dNx is called the lagrangian.
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5 Calculation of the stress-energy tensor

To evaluate the definition (2), we need these identities from article 18505:

δ

δMab
detM = (M−1)ab detM

δ

δMab
(M−1)cd = −(M−1)ca(M

−1)bd,

These identities hold for any invertible matrix M . Specializing these identities to
the matrix whose components are the components gab of the metric tensor gives9

δ

δgab
| det g| = | det g| gab (9)

δ

δgab
gcd(∂cφ)(∂dφ

′) = −(∂aφ)(∂bφ′). (10)

These identities can be used to show that when the action is S =
∫
dNx

√
| det g|L,the

stress-energy tensor defined by (2) is

T ab = −2
δL

δgab
− gabL.

When the lagrangian function has the specific form shown in equation (3), this
becomes

T ab = (∂aφ)(∂bφ)− gab
(
gcd(∂cφ)(∂dφ)

2
− V (φ)

)
. (11)

When the metric is flat, this reduces to the expression shown in article 49705. This
is remarkable, because the expression shown in article 49705 is based on a different
definition of the stress-energy tensor! Article 32191 gives more insight into this
coincidence.

9The symmetry of gab is imposed after calculating the variations. Otherwise, the diagonal components would
require special treatment.
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6 The covariant conservation law: example

Article 37501 explains why (and when) the general expression (2) satisfies the
covariant conservation law ∇aT

ab = 0, where ∇ is the Levi-Civita connection
(article 03519), which is the covariant derivative used in general relativity.10 This
section shows that the special case (11) satisfies the covariant conservation law.

The first step is to write the equation of motion (8) and the stress-energy tensor
(11) in terms of the covariant derivative ∇. After this is done, the derivation of the
covariant conservation law will be relatively easy, because the covariant derivative
∇ commutes with the metric g. To write (8) and (11) in terms of ∇, use these
identities (article 03519):

∂aφ = ∇aφ ∂a

(√
| det g|V a

)
=
√
| det g| ∇aV

a.

The first identity holds for any scalar field φ. The second identity holds for any
vector field V with components V a, such as the combination gab∂bφ appearing in the
equation of motion (8). Using these identities, the equation of motion (8) becomes

gab∇a∇bφ+ V ′(φ) = 0, (12)

and the stress-energy tensor (11) becomes

T ab = (∇aφ)(∇bφ)− gab
(
gcd(∇cφ)(∇dφ)

2
− V (φ)

)
. (13)

Now the derivation of the covariant conservation law is relatively easy. The co-
variant derivative satisfies the product rule (Leibniz rule), so applying ∇a to (13)
gives

∇aT
ab = (∇a∇aφ)(∇bφ) + (∇aφ)(∇a∇bφ)− (∇cφ)(∇b∇cφ) +∇bV (φ).

The second and third terms on the right-hand side cancel each other, and the
remainder is zero for any φ that satisfies the equation of motion (12).

10The symbol ∇ here should not be confused with the ordinary gradient with respect to the “space” coordinates,
for which some other articles in this series use the same symbol ∇.
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7 Why the stress-energy tensor is not unique

The definition (2) assumes that we have specified how the action depends on the
background metric. Even if we only care about the flat-spacetime case, we still
need to temporarily generalize the model to arbitrary not-quite-flat metrics. This
can be done in more than one way, and the output of the definition (2) depends
on which generalization we choose. This section shows that this dependence can
persist even after specializing the result to flat spacetime.

Consider a model of a single scalar field whose action in flat spacetime is

S =

∫
dNx

(
ηab(∂aφ)(∂bφ)

2
− V (φ)

)
, (14)

where η is the Minkowski metric. To use the definition (2) of the stress-energy
tensor, we need to temporarily generalize (14) to curved spacetime. To see that
this generalization is not unique, consider the action

S =

∫
dNx

√
| det g|

(
gab(∂aφ)(∂bφ)

2
− V (φ)− ξRφ2

)
(15)

where R is the Ricci scalar (article 03519) and ξ is an arbitrary coefficient. The flat-
spacetime limit of the action (15) is (14), regardless of the coefficient ξ, because
R = 0 in flat spacetime. However, the stress-energy tensor defined by (2) still
depends on ξ after making the metric flat, because11

δ

δgab

∫
dNx

√
| det g|Rφ2

∣∣∣∣
g=η

= ∂c∂d
(
(ηabη

cd − δcaδdb )φ2
)
6= 0. (16)

This shows that the stress tensor defined by (2) is not unique: it depends on a
whole family of actions, parameterized by a variable metric, not just on a single
action with a single specific metric.

11This result is shown (but not derived) in Pons (2011), section 5.3.1.
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