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Why Does Smearing in Time Work
Better Than Smearing in Space?

Randy S

Abstract In quantum field theory, each region of spacetime has an associated
set of observables. Observables associated with individual points in smooth
spacetime – or more generally with lower-dimensional submanifolds of smooth
spacetime – are typically undefined as operators on a Hilbert space. Starting
with a formulation that treats time as continuous but space as discrete, this
article explains how to use smearing in time to construct observables whose
resolution is much coarser than the discretization scale. The construction works
for any renormalized operator. (This article reviews what that means.) This
article also explains why smearing only in space and smearing in “euclidean
spacetime” are not as effective. The general concepts are illustrated using
operators constructed from a free scalar field.
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1 Introduction

In quantum field theory, observables are represented by operators on a Hilbert
space.1,2 Models are often constructed by treating space or spacetime as discrete
(because in most cases we don’t know how to construct them directly in smooth
spacetime), and then operators that are nominally localized on a lower-dimensional
manifold of d-dimensional spacetime3 may become singular in the smooth-spacetime
limit – in the sense that they cease to be well-defined as ordinary operators on a
Hilbert space. Even if the discretization scale is kept finite, a corresponding issue
still exists: a given operator can represent a physically meaningful observable only
if it is insensitive to discretization artifacts.4

Smearing5 the operator over a region of spacetime much larger than the dis-
cretization scale can fix that problem if the original operator satisfies the growth
condition that will be introduced in section 11. This article shows that if the origi-
nal operator satisfies that condition, then smearing only in time is sufficient.6 This
article also demonstrates that smearing in space is typically not sufficient. Section
2 gives some intuition about both of those statements, and several examples will
be given using scalar fields. Section 19 summarizes the examples.

Section 15 compares smearing in time to smearing in euclidean spacetime, which
is not as effective. Sections 36-39 work through an example of this comparison.

1Articles 03431 and 21916
2In practice, allowing operators to be defined only on a dense subset of the Hilbert space is acceptable and is often

convenient. Such operators are called unbounded (article 74088). Example: the time translation operators U(t) are
defined on the whole Hilbert space, but the hamiltonian H in U(t) = e−iHt is unbounded. In this article, the phrase
“(ordinary) operator on a Hilbert space” includes unbounded operators.

3This includes operators nominally localized at a point and operators nominally localized on a k-dimensional
submanifold with 1 ≤ k ≤ d− 1.

4This is necessary but not sufficient. Even in smooth spacetime, self-adjoint operators on the Hilbert space don’t
necessarily all represent observables (article 21916).

5Section 5 will introduce the concept of smearing an operator.
6This article only considers smearing along a prescribed time coordinate in flat spacetime, but the same idea

applies to smearing along any timelike worldline in curved spacetime (Witten (2023), beginning of section 3.1).
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2 Preview and intuition

Real measurements have limited resolution. In quantum theory, observables are
represented by operators on a Hilbert space. The resolution in time or space of a
measurement of a given observable is related to how much the operator can change
the total energy or total momentum of a state on which it acts. In models with
Lorentz symmetry, a general principle called the spectrum condition (reviewed
in section 7) says that the allowed combinations of the total energy E and total

momentum ~P of a state are restricted to the forward light cone, illustrated here
as the blue-shaded cone:7

E

⃗P

Quantum field theory is often described in smooth spacetime using operators
that are nominally localized at individual points in spacetime, but those opera-
tors cannot represent physically meaningful observables because real measurements
don’t have infinitely fine resolution. Such “operators” are also mathematically un-
healthy: they may be legitimate operators on a Hilbert space when space is discrete,
but they become ill-defined in the smooth-space limit. Mathematically healthy op-
erators with limited resolution in space and time may be constructed using smear-
ing (introduced in section 5), which means replacing the original point-localized
operator with an integral over displacements of that operator weighted by a smear-
ing function that is concentrated in a neighborhood of nonzero size. Smearing in

7The wavy upper edge of the blue-shaded cone is meant to indicate that the cone extends upward to arbitrarily
large energies.
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time limits how much the operator can change the total energy of a state on which
it acts, and smearing in space limits how much the operator can change the total
momentum of a state on which it acts.

This article’s main message is that if smearing in spacetime makes an operator
healthy, then smearing only in time also makes it healthy, but smearing only in
space typically doesn’t. To understand intuitively why smearing only in time is
more effective than smearing only in space, consider the superposition of energy-
momentum eigenstates produced by applying the operator to a state whose energy
and momentum are at the lower tip of the cone in the preceding figure. (Such a
state is called a vacuum state.) Smearing the operator in time effectively imposes
a cutoff on the maximum energy of the states in that superposition, and smearing
the operator in space correspondingly imposes a cutoff on the maximum magnitude
of their momenta, as illustrated here:

E

⃗P

cutoff

E

⃗P

cutoff

In each picture, energies or momenta (repsectively) retained by the cutoff are
shaded in blue, and energies or momenta excluded by the cutoff are shaded in
light gray. These pictures are meant to convey two key insights. First, limiting the
energy automatically limits the momentum, so smearing only in time automatically
limits the operator’s resolution in both time and space. Second, limiting the total
momentum does not limit the energy, so smearing in space only limits the opera-
tor’s resolution in space, not in time. This asymmetry between the effectiveness of
smearing in time and smearing in space is a consequence of the spectrum condi-
tion. Even in models without Lorentz symmetry (nonrelativistic models), a similar
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condition still applies. The cone with a sharp apex at the base might be replaced
by a parabolic “cone” with a smooth base, but its properties are qualitatively the
same: an energy bound implies a momentum bound, but not conversely.

This asymmetry has a familiar analogy in classical mechanics. Consider a sys-
tem of two or more nonrelativistic and non-interacting classical particles whose
individual energies are quadratic functions of their individual momenta. In that
system, constraining the total momentum to be close to zero does not constrain the
total energy at all, but constraining the total energy to be close to zero automati-
cally constrains the total momentum to be close to zero. In fact, it automatically
constrains each individual particle’s momentum to be close to zero.

Again, this article’s main message is that if smearing in spacetime makes an
operator healthy, then smearing only in time also makes it healthy, but smearing
only in space typically doesn’t. This article explains how to make the intuition
more precise and demonstrates it with several examples. The examples show that
in some cases, smearing in space is sufficient,8 but in most cases it is not, not
even in a model without any interactions. The examples all use operators whose
unsmeared versions are nominally localized at a single point in spacetime, but the
general results in sections 11-13 are not limited to that special case.

The results in this article about the effectiveness of smearing in time apply only
to algebraic products of time-smeared operators, not to time-ordered products of
time-smeared operators. The path integral gives time-ordered correlation functions.
Sections 15 and 39 will elaborate on this caveat.

8This is consistent with the classical-particle intuition, because in a system with only one particle, a bound on
the total momentum does imply a bound on the total energy.
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3 Outline

• Section 5 defines smearing.

• Section 6 establishes conditions that smearing functions should satisfy.

• Sections 7-8 review the spectrum condition.

• Section 9 introduces the no-artifacts criterion. The goal is to construct oper-
ators that satisfy this criterion.

• Sections 10-12 introduce a growth condition that unsmeared operators are
assumed to satisfy. It amounts to assuming that smearing in spacetime would
make the operator satisfy the no-artifacts criterion.

• Sections 13 shows that if an operator satisfies the growth condition, then
smearing only in time should be enough to make it satisfy the no-artifacts
criterion.

• Section 14 reviews related results in smooth spacetime.

• Section 15 addresses smearing in “euclidean spacetime.”

• Section 16 explains what renormalization means for a composite operator.
Renormalized composite operators provide a supply of instructive examples.

• Sections 17-18 introduce the average energy test and the norm test that will
be used in the examples.

• Section 19 summarizes the examples.

• Sections 20-24 review background material about scalar fields that will be
used in the examples.

• Section 25 derives an identity that will be used in some of the examples.

• Sections 26-44 work through several examples.

9
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4 Notation and conventions

• D is number of dimensions of space, and d ≡ D + 1 is number of dimensions
of spacetime.

• A state is an element of the Hilbert space (also called a state-vector).

• |0〉 is the vacuum state, normalized so 〈0|0〉 = 1.

• This article uses the hamiltonian formulation. Time is continuous. Space is
a finite lattice with lattice spacing ε.

• The units are such that Planck’s constant ~ and the speed of light are both
1, so energy has the same units as 1/ε.

• The phrase physical units means units that remain meaningful after ε→ 0.

• Time translation symmetry is assumed, so a time-independent energy opera-
tor (hamiltonian) is available.

• x and y are points in spacetime, and x and y are points in space.

• δ(s) is the distribution defined by
∫
ds δ(s)f(s) = f(0).

• U(t) and U(x) denote the translation operators, the unitary operators
that shift a state in time or space by the specified amount t or x.

When space is discrete, O denotes an operator defined on (at least a dense subset
of) the Hilbert space. In the smooth-space limit, O may or may not remain defined
in that sense. O(x) orO(x, t) denotes an operator localized at the indicated point in
spacetime. When the point x or the time t is fixed by the context, the abbreviations
O(t) or O(x) may be used. The notation O(f) will be used for the operator
produced by smearing an operator O, where f is the smearing function (section 5).
In a model with no interactions, (O)R denotes the normal-ordered counterpart of
O (section 30). The subscript R means renormalized (section 16), which is what
normal-ordering achieves in a model with no interactions.
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The Fourier transform of a function f will be denoted fFT. If f is a function of
theD components of x, then its Fourier transform is a function of theD components
of p, which will be called momentum variables. This article uses an integral-like
notation for sums over lattice sites and sums over momentum variables:9∫

x

· · · ≡ εD
∑
x

· · ·
∫
p

· · · ∝
∑
p

· · · .

In the infinite-volum limit (infinite size of the spatial lattice with fixed ε), the sum
over p becomes an integral over p, which is denoted by the same symbol:∫

p

· · · =
∫

dDp

(2π)D
· · · .

This implicitly defines the normalization of the sum. Each component of p is
integrated over the range from −π/ε to π/ε, which is bounded unless the smooth-
space limit ε→ 0 is taken.

Whenever the order of sums/integrals is changed, the re-ordering is understood
to be justified by the fact that the range of the sum/integral is bounded and the
summand/integrand is finite.

9Article 71852
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5 Smearing

For an observable O(x) that is nominally localized at a single point x in spacetime,
smearing means replacing O(x) with

∫
x f(x)O(x) for some function f(x) called

the smearing function. Instead of smearing in both time and space, this article
considers the effect of smearing in only one or the other:

only in time: O(x, t)→
∫
dt f(t)O(x, t)

∫
dt f(t) = 1

only in space: O(x, t)→
∫
x

f(x)O(x, t)

∫
x

f(x) = 1. (1)

In the case of smearing in space, the integral is really a sum, because this article
treats space as discrete. In both cases, the width of the smearing function (in time
or space) should be much greater than ε. Section 6 will establish the properties
that smearing functions should have.

If O is an operator localized at x and F (·) is a nonlinear function, then clearly

smeared(F (O)) 6= F (smeared(O)), (2)

so using a language that distinguishes between the two sides of (2) can sometimes
be convenient:10

• The operators O and F (O) will be called unsmeared.

• The operator smeared(F (O)) will be called (post-)smeared.

• The operator F (smeared(O)) will be called pre-smeared.

In this article, the unqualified word smeared means post-smeared.

10The language post-smeared and pre-smeared is not standard. The unqualified word smeared is standard, and it
usually means post-smeared.
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6 Required properties of smearing functions

In smooth spacetime, smearing functions are typically taken to be Schwartz func-
tions.11,12 Roughly, a function f is a Schwartz function if it decreases faster than
the inverse of any polynomial as its arguments become arbitrarily large and if its
Fourier transform also has that property. The function

f(x, t) ∝ exp

(
− |x|

2

σ2
space

)
exp

(
− t2

σ2
time

)
(3)

is the prototypical example of a Schwartz function.13 Its support is unbounded,
but it is concentrated in a region near |x| = 0 with characteristic width ∼ σspace

and near the time t = 0 with characteristic width ∼ σtime.
Instead of smearing in both space and time, this article compares smearing only

in time to smearing only in space. Examples:

f(t) ∝ exp
(
− t2/σ2

)
(for smearing only in time)

f(x) ∝ exp
(
− |x|2/σ2

)
(for smearing only in space).

Equations (1) show how these functions are used.
Space will be treated as a (very fine) lattice with a (very large) finite number of

points. In this context, the “arbitrarily large” regime doesn’t exist: the spatial co-
ordinates can’t be arbitrarily large because the lattice is finite, and the momentum
variables (the domain of the Fourier transform fFT of f) can’t be arbitrarily large
because the lattice is discrete. In this context, a spatial smearing function should
be a Schwartz function whose characteristic width σ is much less than the overall
width of the lattice (so the width of the lattice is practically infinite compared to σ)
but much greater than the lattice spacing ε (so the width ∼ 1/ε of the momentum
domain is practically infinite compared to 1/σ).

11Haag (1996), text after equation (II.1.6)
12Schwartz functions are a particular class of test functions used in the theory of distributions (Strichartz (1994),

section 3.2).
13Another example: every smooth (infinitely differentiable) function with compact support is a Schwartz function

(Salo (2013), example 3.1.1).
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7 The spectrum condition and Lorentz symmetry

This article focuses on models that have time translation symmetry. In a model
with time translation symmetry, the hamiltonian H – the operator that generates
translations in time – is independent of time. It represents the observable that we
call the system’s total energy.14 In that context, one of the general postulates of
quantum field theory requires the quantity

〈ψ|H|ψ〉
〈ψ|ψ〉

(4)

to have a finite lower bound among all states |ψ〉. This is the spectrum condition.
For simplicity, this article assumes the existence and uniqueness of a lowest-energy
state. This state will be denoted |0〉 and called the vacuum state.15 The constant
term in H will always be chosen so that the lower bound is zero:16

H|0〉 = 0. (5)

This choice is convenient in Lorentz-symmetric models, because then the spectrum
condition can be expressed in a Lorentz-symmetric way as described in section 2.
Section 8 will explain what happens to that view of the spectrum condition when
space is discrete, which ruins exact Lorentz symmetry.

14By definition, the system’s total energy is the conserved quantity associated with time translation symmetry.
Article 12342 introduces this perspective in the context of classical mechanics.

15When time translation symmetry is absent, such a naturally-preferred vacuum state is also absent because the
the model doesn’t have a naturally-distinguished energy operator. Witten (2022) explains some implications of this
in the context of cosmology.

16This article only considers models without gravity, so the constant term in H can be chosen arbitrarily.
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8 The spectrum condition in discrete space

In this article, the important implication of the Lorentz-symmetric version of the
spectrum condition is that imposing a limit on an observable’s time resolution
automatically limits its spatial resolution, too. This article focuses on models
that would have Lorentz symmetry when discretization artifacts are neglected,
so the magnitude of a state’s total momentum should be bounded by its total
energy after the smooth-space limit is taken. That bound does not hold before
the smooth-space limit is taken, but the premise that Lorentz symmetry is a good
approximation near the smooth-space limit implies that such a bound should hold
to a good approximation at least for energies much less than 1/ε. (Section 22 will
check this in the case of a free scalar field.) That’s enough to ensure that making
an observable’s time resolution much coarser than ε is enough to make its spatial
resolution much coarser than ε, too.

15



cphysics.org article 10690 2025-10-12

9 The no-artifacts criterion

In quantum field theory, one way to construct many models is to treat space (or
spacetime) as discrete instead of smooth. If space is treated as discrete, then a scalar
quantum field can be described using operators localized at individual points.17

These operators are already well-defined as ordinary (possibly unbounded) opera-
tors on a Hilbert space without the help of smearing.

The discrete structure is artificial, though. If the distance between discrete
points is ∼ ε, then the only states that can be physically meaningful are those whose
total energy and total momentum (all components) are both negligible compared
to 1/ε. When an operator that is meant to represent a physically meaningful
observable is applied to such a state, the resulting state should still have that
property.18 Altogether, to avoid discretization artifacts, we need to do at least
three things:

• Tune the parameters in the hamiltonian to make the correlation length much
greater than the discretization length scale ε.

• Consider only states whose total energy and total momentum are � 1/ε.

• Consider only observables that preserve that restriction on the states. This
restriction on the observables will be called the no-artifacts criterion.

Smearing in spacetime is used to produce operators that satisfy the no-artifacts
criterion.19 Section 13 will show that if smearing in spacetime is sufficient, then
smearing only in time is already sufficient.

17Article 52890
18This is another way to say that physically meaningful observables should not be able to resolve artificial details

of the way space(time) is discretized (section 2).
19If the goal were to take a strict smooth-space limit, then that physical concern would also be a mathematical

concern: keeping the operators well-defined as operators on a Hilbert space would require smearing them over a
region of finite size in physical units. Many useful models (like quantum electrodynamics) probably don’t have a
nontrivial strict smooth-spacetime limit, though. The perspective used in this article applies to those models, too.
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10 Precedent for the growth condition

Section 13 will derive a result about the sufficiency of smearing in time. That result
relies on a growth condition that will be described in section 11. This section reviews
a corresponding condition that is standard in the context of smooth spacetime.

One of the original axiom systems for quantum field theory in smooth spacetime
uses Wightman functions. A Wightman function is a vacuum expectation value
of a product20 of “operators” localized at non-coincident points in spacetime, with
the understanding that those point-localized entities become legitimate operators
on a Hilbert space only when they are smeared in spacetime.21 When expressed
precisely, this premise about the effectiveness of smearing in spacetime implies
that an unsmeared Wightman function is a tempered distribution,22,23 which
in turn implies24 a bound on how rapidly the function’s Fourier transform can
grow as a function of energy and momentum – the Fourier duals of the time and
space coordinates. Thanks to this bound, smearing in spacetime has the effect of
imposing a (smooth version of a) cutoff in energy and momentum, like section 2
described intuitively. If the growth were too rapid, then smearing in spacetime
would not be effective.25

In this article, space is treated as discrete instead of smooth.26 In this context,

20Wightman functions use the ordinary algebraic product, not the time-ordered product (section 14).
21Streater and Wightman (1980), chapter 3; Haag (1996), sections II.1.2 and II.2.1
22Streater and Wightman (1980), text after equation (3-20)
23Strichartz (1994) gives a proper introduction to the concept of a tempered distribution. Article 58590 gives a

quick review.
24Article 58590
25Wightman functions must be tempered distributions if the set of allowed smearing functions “consists of all

complex-valued, infinitely differentiable functions f , which, together with their derivatives, approach zero at infinity
faster than any power of the euclidean distance [defined to be the sum of the squares of the coordinates]” (Streater
and Wightman (1980), text before equation (2-4)). Jaffe (1967) considers a more restricted set of smearing functions.
This allows the Fourier transforms of unsmeared correlation functions to grow more rapidly as a function of energy
and momentum. This is reviewed in Buoninfante et al (2024), section 2.1, text around equations (5)-(7). Jaffe (1966)
lists some examples of allowed growth rates. Still, if the growth is too rapid, then smearing would not be effective.

26The name Wightman function is reserved for correlation functions in smooth spacetime. This article uses more
generic name correlation function for a vacuum expectation value of a product of operators in not-necessarily-smooth
spacetime. The product is still the algebraic product, not the time-ordered product (footnote 20).

17
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smearing is used to enforce the no-artifacts criterion – to construct such observables
by limiting their resolution in space and time, of equivalently by limiting how much
they can change the energy and momentum of any states on which they act.27 Just
like in the smooth-spacetime context, this only works if the unsmeared operator
O already satisfies a bound on how quickly certain quantities constructed from O
can grow as a function of energy and momentum. Section 11 will introduce such a
growth condition tailored for the context of discrete space. Section 12 will justify
this condition by showing that if O satisfies it, then smearing O in spacetime (with
a suitable smearing function) enforces the no-artifacts criterion. This is analogous
to the situation in smooth spacetime reviewed in the previous paragraph.

27Section 9

18
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11 The growth condition

Let O be an operator that may be localized at a point in spacetime.28 This section
introduces a growth condition, a condition on the rate at which certain quantities
involving O can grow as a function of energy and momentum. Section 12 will justify
the condition by showing that if O satisfies it, then smearing O in spacetime with
an appropriate smearing function enforces the no-artifacts criterion.29 Section 13
will use the same growth condition to show that smearing O only in time is already
sufficient.

Let |j〉 and |k〉 be two eigenstates of the total energy and momentum opera-
tors. The total energy and momentum of the state |j〉 will be denoted Ej and pj,
respectively.30 Then any operator O may be expressed as

O =
∑
j,k

|j〉Ojk 〈k|, (6)

where the sum is over a complete basis of energy-momentum eigenstates and

Ojk ≡ 〈j|O|k〉. (7)

The quantities Ojk will be called the matrix elements of O in the energy-
momentum basis. In this article, saying that the operator O satisfies the growth
condition means that for any given eigenstate |k〉 whose energy and momentum
are much less than 1/ε, the magnitude of Ojk does not grow any faster than a
polynomial in Ej and the components of pj. In symbols, the growth condition is

|Ojk| < c+ EN
j + |pj|N for all j (8)

for some sufficiently large constant c and sufficiently large integer N , both of which
may depend on the state |k〉.

28The analysis in sections 11-13 holds whether or not O is localized at a point.
29Section 9
30For each j, pj has D components, where D is the number of dimensions of space.

19
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12 Justification for the growth condition

This section shows that if an operator O satisfies the growth condition introduced
in section 11, then smearing O in spacetime with an appropriate smearing function
enforces the no-artifacts criterion.

Let O be an operator localized at a point in spacetime, and let U(x) and U(t)
be the unitary operators that translate a state by the specified amounts in space
and time, respectively. The position- and time-dependent version of O is

O(x, t) ≡ U(−t)U(−x)OU(x)U(t).

The operator obtained by smearing O in both space and time is

O(f) ≡
∫
dt

∫
x

f(x, t)O(x, t),

where f is the smearing function. Define Ojk and |j〉 and |k〉 as in section 11. Use
U(x, t)|k〉 = e−iEkt+ipk·x|k〉 to get

〈j|O(f)|k〉 =

∫
dt

∫
x

f(x, t) ei(Ej−Ek)t+i(pj−pk)·xOjk

= fFT(Ej − Ek, pj − pk)Ojk (9)

where fFT is the Fourier transform of the smearing function f . Example: if

f(x, t) ∝ e−(t2+x2)/2σ2

,

then
〈j|O(f)|k〉 ∝ e−((Ej−Ek)2+(pj−pk)2)σ2/2Ojk.

Equations (6) and (9) show that the operator O(f) may be written

O(f) =
∑
j,k

fFT(Ej − Ek, pj − pk)Ojk|j〉 〈k|. (10)

20
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The growth condition (8) and the properties of the smearing function established
in section 6 imply that applying the operator (10) to a state whose total energy and
total momentum are much smaller than 1/ε gives another state with that property.
In other words, O(f) satisfies the no-artifacts criterion.

21
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13 The sufficiency of smearing in time

Section 12 showed that if an operator O satisfies the growth condition established
in section 11, then the operator obtained by smearing O in spacetime satisfies the
no-artifacts criterion. This section shows that the operator obtained by smearing
O only in time already satisfies the no-artifacts criterion. In other words, smearing
O only in time is enough to produce a physically meaningful observable.

The time-smeared version of O is

O(f) ≡
∫
dt f(t)U(−t)OU(t). (11)

Following the same steps as in section 12 gives

O(f) =
∑
j,k

fFT(Ej − Ek)Ojk|j〉 〈k|. (12)

Example: using the smearing function f(t) ∝ e−t
2/2σ2

gives

O(f) ∝
∑
j,k

e−(Ek−Ej)2σ2/2Ojk|j〉 〈k|.

Thanks to the growth condition (8), if the width of the smearing function is � ε,
then applying O(f) to a state |s〉 with total energy � 1/ε gives another state
O(f)|s〉 with that property.

The goal is to show that if the total momentum of |s〉 is also � 1/ε, then
O(f)|s〉 has that property, too. As anticipated by the intuition in section 2, this
is a consequence of the spectrum condition. The spectrum condition says31 that
if E � 1/ε, then the total momentum p and total energy E of a state satisfy
|p| . E, so if total energy of the state O(f)|s〉 is much less than 1/ε, then its total
momentum must be, too. This is why smearing only in time is sufficient.

31Section 8
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14 Related results in smooth spacetime

The result in section 13 applies to models defined in discrete space that may or may
not have a nontrivial strict smooth-space limit. This section reviews corresponding
results in the context of smooth space. In this context, the question is whether
point-localized entities like those appearing in Wightman functions32 can be turned
into legitimate operators on a Hilbert space.

One theorem about the sufficiency of smearing in time was published in Borchers
(1964). That result refers to the point-localized entities in Wightman functions,
which are assumed to be tempered distributions.

A similar result is reviewed in Witten (2023). The conclusion is summarized by
this excerpt:33,34

Though smearing in space is only effective in favorable cases, smearing
in real time [along any timelike worldline] turns a “local operator” of
any dimension into a true operator.

That result is derived from an assumption about the coefficients in the operator
product expansion,35 which in turn implies a bound on the rate of growth in
the energy-momentum domain similar to the one satisfied by Wightman functions.
Either conformal invariance or asymptotic freedom would be sufficient to imply the
assumed property.36

32Section 10
33Witten (2023), text before equation (2.3)
34In this excerpt, “local operator” refers to something localized at a point in spacetime. Witten (2023) emphasizes

the fact that in smooth spacetime, such a thing is not really an operator in the sense of a conventional linear operator
on a Hilbert space (the text before equation (2.1) says “a local operator is not really a Hilbert space operator”). The
purpose of smearing the “operator” in time is to repair that flaw.

35Wilson and Zimmermann (1972) gives a relatively concise introduction to the ideas behind the operator product
expansion.

36Witten (2023), text after equation (2.6)
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15 Smearing in euclidean spacetime

Witten (2023) points out that smearing in d-dimensional euclidean spacetime is
only as effective as smearing in d-dimensional space would be,37 not as effective as
smearing in “real time.” This section explains what that means and offers some
intuition about why it is true.

Consider the three different types of correlation function shown here:

lorentzian

path integral

euclidean

path integral

time-ordered

functions

Schwinger

functions

Wightman

functions

Wick

rotation

more complicated

relationship

The path integral formulation naturally produces either time-ordered correlation
functions38 or Schwinger functions. These are related to each other by Wick
rotation, which converts the signature of the spacetime metric from lorentzian to
euclidean or conversely. These two types of correlation function are both invari-
ant under permutations of the operators in the “product,” up to an overall sign
depending on fermion numbers. Wightman functions (featured in sections 10 and
14) don’t have that property – except when the operators in the product commute
or anticommute with each other – because Wightman functions use the ordinary
algebraic product, not the time-ordered “product.”39 The term “real time” used in

37Witten (2023), text between equations (2.2) and (2.3)
38Article 63548
39Sections 1.3.1-1.3.2 in Montvay and Münster (1997) review the more-complicated analytic relationship between

Wightman functions and the other two types.
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Witten (2023) refers to Wightman functions and to the operator product expansion,
both of which use the algebraic (not time-ordered) product.

The difference between algebraic products and time-ordered products is clearly
important when considering operators that are smeared in time if the supports of
their smearing functions overlap. The results in this article about the effectiveness
of smearing in time apply when considering algebraic products.40 In particular, the
average energy test and the norm test use algebraic products. Sections 36-39 will
show an example of an operator that passes those tests because it’s smeared in time
but fails modified versions of those tests that use time-ordered products instead
of algebraic products. The factor that determines the effectiveness of smearing
is whether algebraic products are used versus time-ordered products, not whether
the signature is lorentzian versus euclidean, because Wightman functions and time-
ordered functions both use lorentzian signature. Saying that smearing in euclidean
time is not effective is really just an indirect (via Wick rotation) way of saying
that time-ordering disrupts the benefits of smearing in time, which is relatively
unsurprising.

In this article’s perspective, the purpose of smearing in time is to produce an
operator that can represent a physically meaningful observable – an observable
that, if measured, would not resolve any artificial details of the space-discretization
scheme that was used only as a compromise to define the model. If we emulate
the effect of a measurement by projecting the state onto one of the observable’s
eigenspaces, then the algebraic product is clearly the relevant one: the observable
must be smeared in time before the projection is applied. That simplistic way of
describing measurements is the context for this article. Ideally, though, we would
treat the measurement as a physical process described within the theory itself.41

In that case, instead of choosing an observable, we would only choose an initial
state, and time-evolution would determine which (if any) observable ends up being
measured. Using an initial state that is smeared in time (equivalently, one that
involves only energies much less than 1/ε) would avoid discretization artifacts.

40If the smearing functions have compact supports that don’t overlap, then the time-ordered product is an ordinary
algebraic product, so the results do apply in that case.

41Article 03431
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16 Renormalized composite operators

The intuition in section 2 suggests that smearing in space won’t always work even
when smearing in time does work. Sections 26-44 will demonstrate this through
several examples. Most of the examples use composite operators, operators that
involve products of the model’s basic field operators.42 Most composite operators
have an ailment that smearing does not cure:43 correlation functions of point-
localized composite operators typically become undefined (or exhibit other forms
of bad behavior)44 in the smooth-space limit, even when the points at which the
operators are localized remain distinct from each other in that limit. Modifying
the operator to cure this ailment without changing its point-localized status is
called renormalizing the composite operator.45,46 To help prevent mistaking one
ailment for another, the examples in this article that use composite operators will
use renormalized composite operators.

In models with interactions, renormalized composite operators are usually only
constructed order-by-order in a small-interaction expansion.47 To avoid dealing
with small-interaction expansions,48 most of the examples in this article use a model
with no interactions at all. In such a model with no interactions, renormalized
composite operators may be constructed exactly using normal ordering, which
is reviewed in section 30.

42Collins (1984), chapter 6
43Smearing can cure divergences that occur when two of those points coincide, but if a correlation function is badly

behaved even when its points don’t coincide, then smearing isn’t enough.
44Section 41
45Renormalizing the model itself means making the parameters in hamiltonian (or action) functions of ε so that

the model’s low-energy predictions are practically independent of ε. Renormalizing a composite operator does not
involve adjusting the parameters in the hamiltonian (or action).

46Renormalized composite operators are the operators featured in the operator product expansion in smooth space
(section 14).

47Witten (1996), lecture 3; Collins (1984), chapter 6; McGreevy (2017), end of section 9.3.2
48I don’t know how to extract definitive conclusions about things like the average energy test or norm test from

the first few terms in a small-interaction expansion.
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17 Testing an operator’s health

This section describes two tests, the average energy test and the norm test,49 that
sections 26-44 will use to check the health of the operators in several examples.
These tests are not perfect. In particular, section 18 will emphasize that the norm
test can easily be deceived. The virtue of these tests is they are relatively easy to
check.

If an observable O satisfies the no-artifacts criterion, then

〈ψ|H|ψ〉
〈ψ|ψ〉

� 1

ε
with |ψ〉 = O|0〉. (13)

This inequality will be called the average energy test. If an operator O fails this
test, then it violates the no-artifacts criterion.

The fact that an operator smeared in time passes the average energy test is not
surprising, so the average energy test will be supplemented by another test that
is sensitive to spatial resolution, too.50 To motivate the test, let U(x) denote the
unitary operator that shifts a state in space by the specified amount x, and use the
abbreviation |ψ〉 ≡ O|0〉. The smooth-spacetime limit of the correlation function
〈ψ|U(x)|ψ〉 may diverge as x → 0 even if it is finite for all nonzero values of x.
This is the expected behavior when O is localized at a point. On the other hand, if
the smooth-space limit of O is a well-defined operator, then the smooth-spacetime
limit of the correlation function should be finite for all x, including x = 0. That
motivates the norm test, which tries to diagnose the operator’s health based on
whether the quantity 〈ψ|ψ〉 (the correlation function at x = 0) remains finite in
the smooth-spacetime limit.

49These names are not standard, but the norm test is commonly used (example: Witten (2023), text around
equation (2.1)).

50Section 18 will explain the sense in which the norm test is sensitive to resolution in space.
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18 How to deceive the norm test

An operator that passes the norm test is not necessarily healthy according to the
criteria in sections 9 and 16. We can make any operatorO pass the test by replacing
it with O/

√
〈ψ|ψ〉 before taking the smooth-spacetime limit.51,52 This is deceptive

because it doesn’t improve the operator’s health at all: the no-artifacts criterion is
independent of the operator’s overall normalization. Section 40 will show that this
type of deception can occur unintentionally.

In the case of a point-localized operator, that type of deception can be caught by
considering the correlation function 〈ψ|U(x)|ψ〉: if the smooth-spacetime limit of
the correlation function drops suddenly to zero as soon as x 6= 0,53 then clearly the
operator is not healthy, because an operator that satisfies the no-artifacts criterion
cannot have infinitely fine resolution in space.54

A more devious version of that deception starts by smearing the operator in
space, say with a smearing function of the form ∝ e−x

2/2σ2

. Then the correlation
function 〈0|OU(x)O|0〉 has nonzero width (≥ σ) even after normalizing it to have
a finite smooth-space limit at x = 0, but the operator itself may still be unhealthy:
it may still violate the no-artifacts criterion. Section 33 will demonstrate this.

51If the operator is meant to represent an observable, then merely multiplying it by an overall factor has no effect
on the corresponding observable: the way we label the possible outcomes of a measurement has no effect on the set
of possible outcomes (article 03431). Still, normalization factors that diverge in the smooth-spacetime limit cause
mathematical problems in that limit.

52The opposite type of deception is also possible: a healthy operator can be made to fail the norm test by applying
a divergent normalization factor, even though such a factor has no effect on the no-artifacts criterion.

53The smooth-spacetime limit of a correlation function of point-localized operators is typically finite and nonzero
when the points are distinct and diverges when two or more points coincide. In discrete spacetime, instead of
diverging, its peak value is very large but finite. If the function is normalized to make its peak value equal to 1
before taking the smooth-spacetime limit, then (if that normalization condition is maintained) the peak will have
zero width after taking the smooth-spacetime limit.

54Section 41 will mention another reason why such a correlation function is not acceptable: it would imply that
the Hilbert space is not separable.
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19 Summary of the examples

The rest of this article focuses on examples. This table summarizes the examples:

section model operator smearing energy norm
type test test

26 free φ none fail fail
27 & 28 free φ space pass pass

29 int φ space pass pass
30 free φn none correlations bad
30 free (φn)R none correlations good

31 & 32 free (φ2)R space fail
33 free (φ2)R space fail
34 free (φn)R space fail fail

36 & 37 free (φn)R time pass
38 free (φn)R time pass
40 free eicφ none fail pass
41 free eicφ none correlations bad
42 free (eicφ)R none correlations good
42 free (eicφ)R none fail
43 free (eicφ)R space fail
44 free (eicφ)R time pass pass

Notes:

• In the second column, the abbreviation “int” means “interacting.”

• (O)R is a renormalized version of O. Renormalization is used to construct
point-localized operators that satisfy the correlation condition described in
section 16.

• An empty entry in one of the last two columns means the specified section
does not check that test. Sections with “correlations good/bad” in those
columns check the correlation condition described in section 16.
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20 Review of the quantum scalar field

Consider a quantum scalar field, using the formulation and notation from article
52890. In that formulation, time is continuous and space is discrete. The model’s
basic observables are the scalar field operators φ(x, t) and their canonical conjugates
φ̇(x, t). By definition, φ(x, t) is localized at x at time t. In discrete space, these
satisfy the equal-time commutation relation

[
φ(x, t), φ̇(y, t)

]
=

i

εD
×

{
1 if x = y,

0 otherwise.
(14)

Choose a time t and let [φ] denote the set of operators φ(x, t) at that time. Let
V [φ] be a function that depends only on the field φ at that time, not on φ̇. The
hamiltonian (energy operator) has the form55

H = εD
∑
x

φ̇2(x, t)/2 + V [φ]. (15)

The sum is over all points x in space at a fixed time t. The time translation op-
erators are U(∆t) = e−iH ∆t, which implies φ̇(x, t) = dφ(x, t)/dt. The hamiltonian
H is invariant under translations in time because it commutes with itself.

The function V is chosen so that the model has a nonzero mass gap (nonzero
single-particle mass) and so that φ → −φ is a symmetry of the model that is not
spontaneously broken.56,57 The constant term in V is chosen to enforce (5). Let |0〉
denote the vacuum (lowest-energy) state. The symmetry φ→ −φ implies

〈0|φ̇(x)|0〉 = 0. (16)

55Article 52890
56Article 07246
57If the symmetry were spontaneously broken, then many states would have the same lowest energy in the smooth-

spacetime limit, and the ones that satisfy the cluster property wouldn’t satisfy 〈0|φ(x)|0〉 = 0 (article 21916).
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21 Review of the free scalar field

A scalar field is called free or non-interacting if the V in equation (15) is a
quadratic polynomial in the operators φ (not φ̇) at time t, so

V [λφ] = λ2V [φ] + constant

for all positive real numbers λ, where the constant term is proportional to the
identity operator. If V is chosen so the model becomes Lorentz symmetric in the
smooth-space limit, then the field operators may be written

φ(x) = φ+(x) + φ−(x) (17)

with58

φ+(x, t) =

∫
p

eiω(p)t−ip·x a†(p)√
2ω(p)

φ−(x, t) =

∫
p

e−iω(p)t+ip·x a(p)√
2ω(p)

, (18)

where the operators a(p) satisfy[
a(p), φ(x, t)

]
=
eiω(p)t−ip·x√

2ω(p)
a(p)|0〉 = 0. (19)

The ε → 0 limit of the function ω(p) is
√
m2 + p2, where m is the single-particle

mass. The integrals in equations (18) are really sums with a finite number of terms.
They become integrals in the infinite-volume limit, as the notation suggests, but
the integration range for each component of p is still bounded.59

We can use equations (17)-(19) to get useful expressions for any correlation
function of the field operators. Section 23 reviews an example.

58Article 00980
59Section 4
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22 The spectrum condition in discrete space

This article focuses on models that would have Lorentz symmetry when discretiza-
tion artifacts are neglected. If Lorentz symmetry were exact, then the magnitude
of a state’s total momentum would be bounded by its total energy. That bound
does not hold before the smooth-space limit is taken, but the premise that Lorentz
symmetry is a good approximation near the smooth-space limit implies that such
a bound should hold to a good approximation at least for energies much less than
1/ε.60 This section shows that it does in the case of free scalar field, where the
calculations can be done exactly.

Each application of the operator a†(p) defined in section 21 increases the total
energy of the state by ω(p) and adds the vector p to its total momentum. The

ε→ 0 limit of the function ω(p) is
√
m2 + p2, so in that limit, the magnitude of the

total momentum cannot exceed the magnitude of the total energy. The question is
what happens to that inequality when ε is nonzero.

When ε is nonzero, the function ω(p) is61

ω(p) =

√√√√m2 +
D∑
k=1

(
2 sin(pkε/2)

ε

)2

where pk is the kth component of p. The magnitude of pk is restricted to be ≤ π/ε.

If one component of p is π/ε and the others are zero, then ω(p) =
√
m2 + 4/ε2 ≈

2/ε for m � 1/ε. This shows that the magnitude of the total momentum can
exceed the magnitude of the total energy, but only by a factor of order 1.

A physically meaningful state should only involve energies � 1/ε, so a more
relevant question is what happens to the inequality when the total energy is� 1/ε.
Suppose the total energy of a state by applying n factors of a†(p) to the vacuum
state is less than a cutoff Λ� 1/ε. Then the total momentum np is subject to the

60Section 8
61Article 00980
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inequality

nω(p) < Λ� 1

ε
.

Explicitly,

n

√√√√m2 +
D∑
k=1

(
2 sin(pkε/2)

ε

)2

< Λ� 1

ε
.

This justifies using the small-θ approximation sin θ ≈ θ to get

n
√
m2 + p2 < Λ.

This says that if the total energy is � 1/ε, then the magnitude of the total mo-
mentum does not exceed the total energy, just like if Lorentz symmetry were exact.
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23 Free scalar field: equal-time 2-point function

Let φ be a free scalar field, and consider the equal-time 2-point correlation function

g(x− y) ≡ 〈0|φ(x, t)φ(y, t)|0〉 (20)

in the infinite-volume limit. The commutation relation [φ(x, t), φ(y, t)] = 0 implies
that the function (20) is real-valued and symmetric. We can use equations (17)-(19)
to derive

g(x) =

∫
p

e−ip·x

ω(p)
. (21)

Section 24 will deduce a useful approximation to this function.
Let φ±(x) denote the energy raising/lowering parts of φ(x) (equation (17)).

Their commutator is proportional to the identity operator I:

[φ−(x), φ+(y)] = g(x− y)I (22)

with g defined by (20).
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24 The 2-point function with coincident points

The integral (21) is well-defined because the integration range for p is finite. We
can emulate this by replacing the original integral with

g(x) ∝∼
∫
p

e−ip·x

ω(p)
e−c ε

2p2

(23)

for some c ∼ 1, where now the integration domain is unbounded. Thanks to
rotation symmetry, this depends only on |x|. For |x| in the range ε� |x| � 1/m,
the integral is approximately independent of ε and m, so we can use dimensional
analysis to get62

g(x) ∝∼
1

|x|D−1
ε� |x| � 1

m
and D ≥ 2 (24)

For |x| = 0, the integral is still approximately independent of m, so dimensional
analysis gives63

g(0) ∝∼
1

εD−1
D ≥ 2. (25)

62For |x| � 1/m, article 22050 shows that g(x) approaches zero like e−m|x|, ignoring factors like 1/|x|D−1 that
decrease less rapidly.

63We could have anticipated this more quickly using the definition (20) and the fact that the field φ(x) has the
same units as ε(1−D)/2.
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25 The average energy test: a useful identity

This section derives an identity that will be used in some of the examples.
Consider an operator O(x) localized at x in discrete spacetime, and consider

its smeared version O(f). The smearing can be in spacetime, or only in space, or
only in time. Suppose that O(f) is hermitian and that the smearing function f is
real-valued, so O†(f) = O(f). Use H|0〉 = 064 and the abbreviation65

Ȯ(f) ≡ i[H,O(f)] (26)

to get this expression for the energy of the state |ψ〉 ≡ O(f)|0〉:

〈ψ|H|ψ〉
〈ψ|ψ〉

=

〈
0
∣∣[O(f), H]O(f)

∣∣0〉+
〈
0
∣∣O(f)[H,O(f)]

∣∣0〉
2〈ψ|ψ〉

= i

〈
0
∣∣ [Ȯ(f), O(f)

] ∣∣0〉
2
〈
0
∣∣O2(f)

∣∣0〉 . (27)

64Equation (5)
65H is the generator of time-evolution, and Ȯ is the derivative of eiHtOe−iHt with respect to t evaluated at t = 0.
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26 Free field without smearing

This section shows that without any smearing, the free scalar field operator φ(x, t)
fails the norm test and the average energy test.

Equations (20) and (25) show that the unsmeared scalar field operator φ(x, t)
fails the norm test, because (25) diverges as ε→ 0.

For the average energy test, choose a point x, t in spacetime and define |ψ〉 ≡
φ(x, t)|0〉. This has finite norm because space is discrete: the limit ε → 0 is not
taken yet. Use this and the equal-time commutation relation (14) in the identity
(27) to get

〈ψ|H|ψ〉
〈ψ|ψ〉

=

〈
0
∣∣[φ(x, t), H]φ(x, t)

∣∣0〉+
〈
0
∣∣φ(x, t)[H,φ(x, t)]

∣∣0〉
2〈ψ|ψ〉

=
i
〈
0
∣∣[φ̇(x, t), φ(x, t)]

∣∣0〉
2〈0|φ2(x, t)|0〉

=
1

2εD〈0|φ2(x, t)|0〉
.

Using equation (25) to evaluate 〈ψ|ψ〉 gives

〈ψ|H|ψ〉
〈ψ|ψ〉

&
1

ε
as ε→ 0, (28)

so φ(x, t) fails the average energy test.
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27 Free field smeared in space

This section shows that the free scalar field operator φ(f) smeared only in space
passes both the norm test and the average energy test.

Use equation (21) to deduce66

〈0|φ2(f)|0〉 ∝∼
∫
p

|fFT(p)|2

ω(p)
(29)

where fFT is the Fourier transform of the smearing function f . Equation (1) implies
that the integral ∫

p

|fFT(p)|2

remains finite as ε→ 0,67,68 so the integral (29) does, too. This shows that smearing
only in space suffices to make the free scalar field operator pass the norm test.

If |ψ〉 = φ(f)|0〉, then the quantity (27) is

〈ψ|H|ψ〉
〈ψ|ψ〉

= i
〈0|[φ̇(f), φ(f)]|0〉

2〈0|φ2(f)|0〉
∝∼

∫
x |f(x)|2∫

p |fFT(p)|2/ω(p)
, (30)

which is also finite as ε → 0. This shows that smearing only in space suffices to
make the free scalar field operator pass the average energy test. This is consistent
with the intuition in section 2, because applying the free scalar field operator to
the vacuum state produces a single-particle state.69

66Throughout these examples, all unwritten proportionality factors are independent of ε.
67Hunter (2005), theorem 11.37
68Example: if f(x) ∝ e−x

2/2σ2

with σ2 > 0, then fFT(p) ∝ e−σ
2p2/2 in the limit ε → 0 (Hunter (2005), equation

11.24).
69Article 30983
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28 Pre-smeared composite operators

If the smeared field operator φ(f) satisfies the average energy test and norm test,
then so does any pre-smeared70 composite operator constructed from φ(f). This
section confirms this directly for one example of such an operator.

Consider the free scalar field again, and let φ(f) be the field operator smeared
only in space. Choose a real number c and consider the pre-smeared operator
O = eicφ(f). This operator is unitary, so it clearly passes the norm test. The result
in section 27 suggests that this operator will also pass the average energy test. To
check this, start with

−iȮ = [H,O] =
1

2

∫
x

[
φ̇2(x), eicφ(f)

]
=

1

2

∫
x

(
φ̇(x)

[
φ̇(x), eicφ(f)

]
+
[
φ̇(x), eicφ(f)

]
φ̇(x)

)
=
c

2

(
φ̇(f)O +Oφ̇(f)

)
=
c

2
[φ̇(f),O] + cOφ̇(f)

=
c2

2

(∫
x

|f(x)|2
)
O + cOφ̇(f)

Use that expression for Ȯ in

〈ψ|H|ψ〉
〈ψ|ψ〉

=

〈
0
∣∣O†[H,O]

∣∣0〉
2〈ψ|ψ〉

= −i
〈
0
∣∣O†Ȯ∣∣0〉

2
〈
0
∣∣O†O∣∣0〉 (31)

and then useO†O = 1 and (16) to deduce that the ratio (31) is equal to c2

4

∫
x |f(x)|2.

This shows that the pre-smeared operator passes the average energy test, as ex-
pected.

70Section 5
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29 Interacting field smeared in space

Sections 27 showed that smearing only in space is enough to make the free scalar
field operator pass the norm test and the average energy test. This section shows
that smearing only in space is still enough when the field is self-interacting.71

First consider the norm test. The Källén-Lehmann representation of the
2-point function is72

〈0|φ(x, t)φ(y, t)|0〉 =

∫
p

∫ ∞
0

dp0

∫ ∞
0

ds ρ(s)δ(p2
0 − p2 − s)eip·(x−y) (32)

where ρ(s) is a non-negative function satisfying73,74∫ ∞
0

ds ρ(s) = 1. (33)

This gives75

〈0|φ2(f, t)|0〉 =

∫
x,y

f(x)f(y)〈0|φ(x, t)φ(y, t)|0〉

=

∫
p

∫ ∞
0

dp0

∫ ∞
0

ds ρ(s)δ(p2
0 − p2 − s)|fFT(p)|2

=

∫
p

∫ ∞
0

ds ρ(s)
|fFT(p)|2√

p2 + s
(34)

71This result is not anticipated by the intuition in section 2 because this derivation does not assume that φ|0〉 is
a single-particle state.

72Weinberg (1995), equation (10.7.5)
73Weinberg (1995), equation (10.7.18)
74A representation of the form (32) would still hold if the field operator φ were replaced by a composite operator, but

the normalization condition (33) is a special property of the field operator φ (Weinberg (1995), text above equation
(10.7.17)). For other operators, ρ(s) is only “polynomially bounded in the large momentum limit” (Buoninfante et
al (2024), text after equation (2.3)), which amounts to assuming that smearing in spacetime works (sections 10 and
12).

75The square root in the denominator of the integrand comes from evaluating the integral over p0, because the
delta distribution in the integrand may also be written δ(p20 − p2 − s) = δ

(
(p0 + (p2 + s)1/2)(p0 − (p2 + s)1/2)

)
.
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This would be finite without the factor
√

p2 + s in the denominator, and that
factor only makes the integrand decrease even faster for large p2 and large s. If
the single-particle mass m is nonzero, then ρ(s) = 0 for s < m2, so the minimum

value of
√

p2 + s is nonzero. Altogether, this shows that the quantity 〈0|φ2(f, t)|0〉
is finite in smooth space. Use this in (35) to conclude that smearing only in space
is enough to make the interacting scalar field pass the norm test.

Now consider the average energy test. If |ψ〉 = φ(f, t)|0〉, then the quantity (27)
is

〈ψ|H|ψ〉
〈ψ|ψ〉

= i
〈0|[φ̇(f, t), φ(f, t)]|0〉

2〈0|φ2(f, t)|0〉
∝∼

∫
x |f(x)|2

〈0|φ2(f, t)|0〉
. (35)

The numerator is just like it was for the free scalar field, because the interaction
doesn’t change the equal-time commutation relation or the part of H that affects
its commutator with φ(f, t).76 The denominator is different, but the previous para-
graph showed that it’s not zero and does not approach zero in the smooth-space
limit, so the quantity (35) has a finite smooth-space limit. This shows that the
operator φ(f, t) passes the average energy test.

We can also use equation (35) to confirm again that φ(f, t) passes the norm test.
The quantity (35) cannot be zero because the vacuum state |0〉 is the only state
for which the expectation value of H is zero.77 The numerator in (35) is manifestly
finite, so the fact that the ratio is nonzero implies that the denominator must also
be finite.

This shows that for the field operator itself, smearing only in space is sufficient.78

Other examples will show that for most (composite) operators, smearing only in
space is not effective, not even for a free scalar field.

76H may be expressed in terms of the field operators φ(x, t) at any given time t, and since H is independent of
time, the expression is the same no matter which t we choose (article 52890). The statement about the commutator
[H,φ(f, t)] assumes that the value of t used in the expression for H is the same as the one in φ(f, t).

77This assumes that the φ→ −φ symmetry is not spontaneously broken (section 20).
78Witten (2023), text after equation (2.2)
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30 Renormalization with free fields

The remaining examples will use composite operators. They are constructed from
the basic field operators φ(x, t) but that are not linear in those field operators.
Correlation functions involving point-localized composite operators are usually not
well-behaved, but they are well-behaved when they involve only a subset of those
operators called renormalized composite operators.79 This section uses a free scalar
field to illustrate those statements.

Even if the field is not free (if V involves higher powers of φ), we can always
write the field in the form (17) where φ± are the energy raising/lowering parts of
φ.80 The free scalar field is special, though, because in this case the commutator
[φ−(x), φ+(y)] is proportional to the identity operator.81 This section explains how
that special feature can be used to construct renormalized composite operators in
the free scalar field model. This will be done in two steps. The first step defines
normal ordering and shows that the normal-ordered counterpart of a point-localized
operator is another operator localized at the same point. The second step shows
that correlation functions of these operators are well-behaved.

To define normal ordering, write φ(x) = φ+(x) +φ−(x) as in equation (17). Let
P be a product with any number of factors of φ+s and any number of factors of φ−,
multiplied in any order. Define (P )R to be the product with those same numbers
of factors but with all φ+s on the left and all φ−s on the right.82 This recipe
for modifying P is called normal ordering.83 The subscript R is used because
if the field is free, then (P )R qualifies as a renormalized operator, which will be

79This is the defining property of renormalized operators (section 16). The smooth-space limit of a correlation
function of point-localized renormalized operators is allowed diverge only when two or more of the points coincide.
Those divergences are cured by smearing, not by renormalization.

80The energy raising/lowering parts are usually called the creation/annihilation parts. For a free scalar field, that
language makes sense, because in that model they create/annihilate individual particles. In a model with interactions,
the relationship to particles is usually not so simple, but the energy raising/lowering language is still accurate.

81If the field is not free then [φ−(x), φ+(y)] is not necessarily proportional to the identity operator, so renormal-
ization requires other methods (Bostelmann and Fewster (2009), end of section 1).

82The traditional notation for (P )R is :P : .
83Article 23277
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demonstrated later in this section. For any two products A and B and coefficients
cA and cB, the definition is extended to cAA + cBB by linearity: (cAA + cBB)R ≡
cA(A)R + cB(B)R.

The first goal is to show that the normal-ordered counterpart of a point-localized
operator is another operator localized at the same point. For this, consider an
example. Start with the operator φ4(x). This operator is well-defined when space

is discrete. Write it as φ4(x) =
(
φ+(x) + φ−(x)

)4
to get a sum of products of the

energy raising/lowering operators φ±(x) in various orders. Use the trivial identity

φ−(x)φ+(y) = φ+(y)φ−(x) + [φ−(x), φ+(y)] (36)

and the fact that [φ−(x), φ+(y)] is proportional to the identity operator to get

φ4(x) = (φ4(x))R + c2 (φ2(x))R + c0 (37)

where the coefficients ck are functions of the ε-dependent real number [φ−(x), φ+(x)].
Similarly, for any positive integer n, the composite operator φn(x) may be written
as a linear combination of normal ordered operators (φk(x))R with 0 ≤ k ≤ n.
This relationship between the operators φn(x) and their normal-ordered counter-
parts may be written

φn(x) =
∑
k≤n

Mn,k (φk(x))R (38)

with real-valued coefficients Mn,k. This implies84

(φn(x))R =
∑
k≤n

(M−1)n,k φ
k(x) (39)

where M−1 is the inverse of the matrix M . This shows that (φn(x))R is polynomial
in φ(x) with order n. The operator φ(x) is localized at x by definition, so this
shows that (φn(x))R is also localized at x.

84Proof: write M = M0+M1 where M0 is diagonal and (M1)n,k = 0 whenever k ≥ n. Then MN
1 = 0 for sufficiently

large N . Write M = M0(I +M−10 M1) to get

M−1 = (I +M−10 M1)−1M−10 = (I −M−10 M1 + (M−10 M1)2 − · · · (up to Nth power))M−10 .
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The next goal is to show that correlation functions of the operators (φn(x))R
are well-behaved. For this, consider another example, the correlation function of
two such operators: 〈

0
∣∣(φn(x))R(φk(y))R

∣∣0〉. (40)

Use the identity (36) together with φ−|0〉 = 0 and the fact that [φ−(x), φ+(y)] is
proportional to the identity operator to reduce this 2-point function to a polynomial
in the quantity [φ−(x), φ+(y)]. That quantity is well-behaved in the sense that it is
finite for x 6= y and nonzero in a neighborhood of x = y whose size remains nonzero
in the smooth-space limit. This shows that the 2-point function (40) is also well-
behaved in this sense. The same reasoning works for any correlation function of
normal-ordered operators.

Altogether, this shows that (φn(x))R qualifies as a renormalized counterpart of
φn(x). By the way, this also shows that correlation functions like〈

0
∣∣φn(x)φk(y)

∣∣0〉 (41)

are typically not well-behaved (unless n = k = 1). To deduce this, use equation
(38) and the fact that the coefficients in that equation are proportional to powers
of the quantity [φ−(x), φ+(x)] ∼ 1/εD−1 (if D ≥ 2),85 which diverges when ε→ 0.

Any linear combination of renormalized operators with ε-independent coeffi-
cients is still a renormalized operator (still has well-behaved correlation functions).
That implies that renormalization is not unique: equation (39) is not the only
nth-order polynomial in φ(x) that qualifies as a renormalized operator.

Beware that in the physics literature, unrenormalized operators and their renor-
malized counterparts of are often denoted using the same symbol, without any dec-
orations (like the subscript R) to distinguish them from each other. This tendency
is strangely more prevalent in the context of models with interactions, even though
constructing renormalized composite operators is (much) more difficult that it is
when interactions are absent.

85Section 24
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31 (φ2)R smeared in space: norm test

Let φ(x) be a free scalar field in D-dimensional space, and consider the normal-
ordered version of φ2(x), which is86

(φ2(x))R = φ2(x)− 〈0|φ2(x)|0〉. (42)

Smearing this operator in space gives an operator

O ≡
∫
x

f(x)(φ2(x, t = 0))R. (43)

When space is discrete, this is a well-defined operator on the Hilbert space, but it
becomes ill-defined in the smooth-space limit if the number of dimensions of space
is D ≥ 2. This section shows that O fails the norm test, and section 33 will show
that it also fails the average energy test.

Use the expression for φ(x) from section 21 to get

(φ2(x))R|0〉 ∝
∫
p1,p2

a†(p1)a
†(p2)e

−i(p1+p2)·x√
ω(p1)ω(p2)

|0〉, (44)

with the understanding that the integrals are cut off when the magnitude of any
momentum component reaches π/ε because we haven’t taken the smooth-space
limit yet. Define G2(x − x′) ≡ 〈0|(φ2(x′))R (φ2(x))R|0〉 and use equations (19) to
get

G2(x− x′) ∝
(
g(x− x′)

)2
(45)

with g defined by (23). The operator O is defined by smearing (φ2(x))R in space
before taking the smooth-space limit. To check whether O passes the norm test,
we should consider the smooth-spacetime limit of the quantity

〈0|OO|0〉 =

∫
x,x′

f(x)f(x′)G2(x− x′). (46)

86Section 30

45



cphysics.org article 10690 2025-10-12

To make this more explicit, use the smearing function f(x) ∝ e−x
2/2σ2

and evaluate
the integrals over x and x′ first to get87

〈0|OO|0〉 ∝
∫
p1,p2

e−(p1+p2)2σ2

ω(p1)ω(p2)
. (47)

To determine how this depends on ε, use the abbreviations p± ≡ p1 ± p2. The
exponential factor in the integrand effectively prevents the magnitude of p+ from
being much greater than 1/σ, but the magnitude of p− can still be ∼ 1/ε, so the
factors of ω in the denominator can both still be ∼ 1/ε. This gives

〈0|OO|0〉 ∝∼
1

σDεD−2
if D ≥ 2. (48)

The case D = 1 will not be considered here. It requires special handling because
if m = 0 then the integrand would diverge as pk → 0, so the dependence on m
cannot be ignored in that case.

This shows that if the number of dimensions of space is D ≥ 2 (that is, if the
number of dimensions of spacetime d ≥ 3), then the operator O fails the norm test:
the norm of O|0〉 becomes undefined in the smooth-space limit.

The message is that smearing the point-localized operator (42) only in space is
insufficient. Section 34 will show that this is typical: (post-)smearing only in space
is almost never sufficient, even though it is sufficient for the field operator itself.88

87Switching the order of integration is allowed because space is discrete and finite, so the “integrals” are really
finite sums. The smooth-space limit or infinite-volume limits are taken only after obtaining expressions that are
well-defined in those limits.

88Sections 27-29
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32 Another method

In section 31, the quantity (46) was studied by evaluating the integrals over x,x′

before the integrals over p,p′. This section confirms that integrating over p,p′ first
leads to the same conclusion.

For |x| � 1/m, the smooth-space limit of the function (45) would be89

G2(x) ∼
(

1

|x|D−1

)2

,

but before the smooth-space limit, equation (25) says it approaches ∝ (1/εD−1)2

when |x| → 0. Since the goal is only to determine how 〈0|O2|0〉 depends on ε, we
can use these properties of G2(x) and otherwise treat the sums over lattice points
as smooth integrals (like the notation already suggests). Using the abbreviations
x± ≡ x± x′ and the identity

e−x
2/2σ2

e−(x′)2/2σ2

= e−x
2
+/4σ

2

e−x
2
−/4σ

2

,

this gives ∫
x,x′

f(x)f(x′)G2(x−) ∝ 1

σ2D

∫
x,x′

e−x
2
+/4σ

2

e−x
2
−/4σ

2

G2(x−)

∝ 1

σD

∫
x−

e−x
2
−/4σ

2

G2(x−),

and then equation (25) gives∫
x,x′

f(x)f(x′)G2(x−) ∝ εD

σD
G2(0) if D ≥ 2

∝ 1

σDεD−2
if D ≥ 2.

This agrees with the previous result (48).
89Equations (24) and (45)
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33 (φ2)R smeared in space: average energy test

Section 31 showed that the operator (43) fails the norm test. This section shows
that it also fails the average energy test.

Section 31 already evaluated 〈ψ|ψ〉. The quantity 〈ψ|H|ψ〉 in the numerator of
the average energy test can be evaluated in a similar way. The result is like (47)
but with a new factor of ω(p1) + ω(p2) in the integrand:

〈0|OHO|0〉 ∝
∫
p1,p2

ω(p1) + ω(p2)

ω(p1)ω(p2)
e−(p1+p2)2σ2/2, (49)

so

〈0|OHO|0〉 ∝∼
1

σDεD−1
. (50)

Combine this with the previous result (48) to get

〈0|OHO|0〉
〈0|OO|0〉

∝∼
1

ε
.

This diverges in the smooth-space limit ε→ 0, so O fails the average energy test.
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34 (φn)R smeared in space

The analysis in sections 31-33 can be generalized to (φn(x))R for any positive integer
n. This section shows that for every n ≥ 2, the operator

O ≡
∫
x

f(x)(φn(x, t = 0))R (51)

fails the norm test and the average energy test. This illustrates the claim that
smearing a point-localized operator only in space is almost always insufficient.

First consider the norm test. Use the fact that the only term in (φn(x))R that
contributes to (φn(x))R|0〉 is the term involving only energy-increasing operators
a†(p), not the energy-decreasing operators a(p). This generalizes equation (44) to
arbitrary n. That leads immediately to this generalization of (45):

Gn(x− x′) ≡ 〈0|(φn(x′))R (φn(x))R|0〉 ∝
(
g(x− x′)

)n
(52)

Proceed like in section 32 to get

〈0|OO|0〉 =

∫
x,x′

f(x)f(x′)Gn(x−)

∝ εD

σD
Gn(0) if D ≥ 2

∝ εD

σDεn(D−1)
if D ≥ 2.

This shows that the operator (51) fails the norm test for every n ≥ 2.
Generalizing the analysis in section 33 to any n shows that it also fails the

average energy test.
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35 Conformal field theory

The result in section 34 can be generalized to any model that would, in the infinite-
volume and smooth-space limits, be scale-invariant. The study of scale-invariant
models is called conformal field theory. For such a model, spatial smearing is
sufficient for the norm test if and only if the dimension ∆ of an operator satisfies
2∆ < D.90 To deduce this, use

G(x− y) ≡ 〈0|O(x)O(y)|0〉 ∝ |x− y|−2∆, (53)

which follows from the definition of ∆. If the smearing function is f(x) ∝ e−x
2/2σ2

,
then an approach like the one in section 32 gives∫

dDx′ dDx f(x)f(x′)G(x′ − x) ∼ εD

σDε−2∆
. (54)

For a free scalar field, we can use näıve dimensional analysis [φn] = [m](D−1)n/2 to
get 2∆ = n(D − 1), and then this reproduces the analysis in section 34.

90Witten (2023), text after equation (2.2)
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36 (φn)R smeared in time: norm test

This section shows that if φ is a free scalar field and n is a positive integer, then
the operator defined by smearing (φn(x, t))R in time passes the norm test.91,92

Setting x = 0 and smearing in time gives the operator

O ≡
∫
dt f(t) (φn(x, t))R. (55)

Using the abbreviation ωk ≡ ω(pk), the norm of O|0〉 is

〈0|O2|0〉 =

∫
dt dt′ f(t)f(t′)〈0|

(
φ−(0, t′)

)n(
φ+(0, t)

)n|0〉
∝
∫
dt dt′ f(t)f(t′)

(∫
p

eiω(p)(t−t′)

ω(p)

)n
=

∫
dt dt′ f(t)f(t′)

∫
p1,...,pn

ei(ω1+···+ωn)(t−t′)

ω1 · · ·ωn
(56)

with a proportionality factor that remains finite as ε → 0. Use the smearing
function f(t) ∝ e−t

2/2σ2

to get

〈0|O2|0〉 ∝
∫
p1,...,pn

e−(ω1+···+ωn)2σ2

ω1 · · ·ωn
. (57)

The exponential factor in the integrand suppresses large values of the quantity
ω1 + · · ·+ωn. Ignoring the cross-terms ωjωk with j 6= k in the exponential reduces

91(· · · )R denotes a normal-ordered operator.
92Equation (2.4) in Fewster and Verch (2013) shows the result of a more general calculation in which the vacuum

state |0〉 is replaced by a more general family of states. Instead of using the norm test to assess the health of the
operator, they use it to characterize the state (theorem 2.3).
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the degree of suppression. Use this fact together with σ � 1/m to get93,94

∫
p1,...,pn

e−(ω1+···+ωn)2σ2

ω1 · · ·ωn
≤

(∫
p

e−ω
2σ2

ω

)n

∝∼
(

1

σD−1

)n
, (58)

which shows that the operator (55) passes the norm test.

93If σ � 1/m, then the integral is dominated by momenta with |p| � m, so ω ≈ |p|.
94Footnote 101 in section 38 also applies here.
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37 Another method

In section 36, the quantity (56) was studied by evaluating the time integrals before
the momentum integrals. This section confirms that doing the momentum integrals
first leads to the came conclusion.95 This approach will take more effort, but it is
included here because section 39 will use a similar approach to explore what would
happen if the algebraic product O2 is were replaced by a time-ordered product.

Remember that space is being treated as a finite lattice so that the integrals
are really finite sums. Taking the infinite-volume limit is not a problem: the sum
over momenta becomes an integral over momentum, as the notation suggests. In
contrast, the smooth-space limit cannot be taken before the time integrals are
evaluated, because then the momentum integrals would be undefined.96

To evaluate the momentum integrals first, we need to account for the fact that
when space is discrete, the domain of the momentum integrals is compact. Since
ω(p) is positive for all p, we can achieve the same effect by replacing∫

p

eiω(p)t

ω(p)
→
∫
p

eiω(p)(t+iε̂)

ω(p)

with ε̂ ∼ ε. This makes the integrand absolutely integrable with no restriction on
the integration domain, so now we can allow the momentum integrals to extend
to arbitrarily large momenta. Now we can use the condition ε � 1/m to justify
neglecting the dependence on m (so ω ≈ |p|) and then use dimensional analysis to
infer97∫

p

eiω(p)(t+iε̂)

ω(p)
≈
∫ ∞

0

dω
ωD−1 eiω (t+iε̂)

ω
∝∼

1

(t+ iε̂)D−1
for t� 1

m
. (59)

95The relationship between this section and section 36 analogous to the relationship between sections 32 and (31),
but for smearing in time instead of smearing in space.

96When space is discrete, the domain of integration for the momentum integrals is finite, but in the smooth-
space limit the momentum integration variables can be arbitrarily large. In the näıve smooth-space limit, rotational

symmetry would give
∫
p
eiωt

ω ∝
∫∞
0
dp pD−1

ω eiωt, so the integrand is not absolutely integrable over 0 < p <∞.
97Without the iε̂ term, dimensional analysis would give

∫
p

exp(iω(p)t)
ω(p)

∝∼ 1/tD−1 only for t in the range ε� t� 1/m,

where the integral is approximately independent of both the lattice spacing ε and the mass m.
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The iε̂ term in the denominator of equation (59) is essential, so let’s check it another
way. Define a function θ(ω) by

θ(ω) ≡

{
1 if ω > 0

0 if ω < 0,

and write k ≡ D − 1. Then equation (59) says that for any positive integer k ≥ 1,
the Fourier transform of θ(ω)ωk−1 is 1/(t + iε̂)k. We can check this by calculating
the inverse Fourier transform ∫

dt
e−iωt

(t+ iε̂)k
.

If ω > 0, then the integration contour can be closed by looping back around the
lower half of the complex plane. Then the contour encloses the pole at t = −iε̂, so
Cauchy’s integral theorem says the integral is proportional to ωk−1 in that case. If
ω < 0, then the integration contour can be closed in the upper half of the complex
plane. Then the contour does not enclose a pole, so Cauchy’s integral theorem says
the integral is zero in that case. This gives98∫

dt
e−iωt

(t+ iε̂)k
∝ θ(ω)ωk−1,

which is consistent with (59).
Now return to the task of evaluating (56). Using (59) to evaluate the momentum

integrals in (56) gives

〈0|O2|0〉 ∝
∫
dt dt′ f(t)f(t′)

(
1

(t− t′ + iε̂)D−1

)n
=

∫
dt dt′ f(t)f(t′)

1

(t− t′ + iε̂)k
with k ≡ n(D − 1). (60)

98Switching the roles of t and ω gives a relationship that many introductions to quantum field theory use to relate
time-ordered correlation functions – which are defined using factors of θ(±t) (section 39) – to propagators that have
a small imaginary offset in the momentum domain. That small imaginary offset is sometimes called Feynman’s
prescription (example: Visser (2022)).
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As before, use the smearing function f(t) ∝ e−t
2/2σ2

with σ � 1/m. To show that
(60) is finite whenever D ≥ 2, use the identity(

d

dt

)k+1 (
(log t− 1)t

)
∝ 1

tk
,

which is true for any positive integer k. Use this in (60) and then integrate by
parts99 to get

〈0|O2|0〉 ∝
∫
dt dt′

(
log(t− t′ + iε̂)− 1

)
(t− t′ + iε̂)

(
d

dt

)k+1

f(t)f(t′).

This is manifestly finite even when ε̂ = 0, so now we can set ε̂ = 0 (which corre-
sponds to taking the smooth-space limit in (56)) and use dimensional analysis to
get

〈0|O2|0〉 ∝ 1

σk
,

which agree with the previous result (58),100 showing once again that the operator
O defined in (55) passes the norm test.

99Witten (2023), equations (2.3)-(2.5)
100Recall that equation (60) defined k ≡ n(D − 1).
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38 (φn)R smeared in time: average energy test

Consider the operator O defined by (55), and use the abbreviation |ψ〉 ≡ O|0〉.
Section 36 already evaluated 〈ψ|ψ〉. The quantity 〈ψ|H|ψ〉 in the numerator of the
average energy test can be evaluated in a similar way. This gives an integral like
(57) but with a new factor of ω1 + · · ·+ ωn in the integrand:

〈0|OHO|0〉 ∝
∫
p1,...,pn

ω1 + · · ·+ ωn
ω1 · · ·ωn

e−(ω1+···+ωn)2σ2

. (61)

Just like in section 36, this gives∫
p1,...,pn

ω1 + · · ·+ ωn
ω1 · · ·ωn

e−(ω1+···+ωn)2σ2 ≤

(∫
p

e−ω
2σ2

ω

)n−1 ∫
p

e−ω
2σ2

∝∼
(

1

σD−1

)n−1
1

σD
. (62)

For narrow smearing widths σ, the integrals (57) and (61) are both dominated
by parts of the integration domain where at least one ωk is large, so ignoring the
cross-terms ωjωk with j 6= k makes the value of the ratio 〈0|OHO|0〉/〈0|OO|0〉
larger.101 Use this with equations (58) and (62) to get

〈0|OHO|0〉
〈0|OO|0〉

≤ 〈0|OHO|0〉
〈0|OO|0〉

∣∣∣∣
no cross terms

∝∼
1

σ
� 1

ε
.

This shows that O passes the average energy test.

101Instead of using this reasoning about the cross-terms, we can simply use the fact that if ε � σ � 1/m, then
the dependence on ε and 1/m is negligible, and then the result follows from dimensional analysis. The cross-terms
argument is introduced here because it will be used again in section 44, where dimensional analysis is not sufficient
because the value of the proportionality factor will be important (even though it remains finite as ε→ 0).
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39 Time-ordered products and time-smearing

Section 15 mentioned that the results in this article about the effectiveness of
smearing in time apply only when restricted to algebraic products of the smeared
operators, not when using time-ordered products. Sections 36-37 showed – using
two different methods – that the operator defined by smearing (φn(x, t))R in time
passes the norm test, which is possible because the norm test defined in section
17 is expressed using algebraic products. This section shows will show that the
same operator would fail the test if the test were modified to use the time-ordered
product instead.102

Use the abbreviation O(t) ≡ (φn(0, t))R for the unsmeared operator. The first
line of equation (56) involves the algebraically ordered 2-point function

〈0|O(t′)O(t)|0〉.

Suppose that it were replaced with the time-ordered 2-point function

〈0|TO(t′)O(t)|0〉 ≡ θ(t′ − t)〈0|O(t′)O(t)|0〉+ θ(t− t′)〈0|O(t)O(t′)|0〉.

The analog of equation (60) would be

〈0|TO2|0〉 ∝
∫
dt dt′ f(t)f(t′)

(
θ(t′ − t)

(iε̂+ t− t′)k
+

θ(t− t′)
(iε̂+ t′ − t)k

)
=

∫
dt dt′ f(t+ t′)f(t′)

(
θ(−t)

(iε̂+ t)k
+

θ(t)

(iε̂− t)k

)
=

∫
dt′ f(t′)

(∫ 0

−∞
dt
f(t+ t′)

(iε̂+ t)k
+

∫ ∞
0

dt
f(t+ t′)

(iε̂− t)k

)
. (63)

This differs from equation (60) only because of the sign of t in the denominator of
the second term, but this sign has an enormous effect. To make the comparison

102Using the words same operator in this sentence is an example of equivocation, because the definition of the
time-ordered product of time-smeared operators uses a generalized definition of operator.
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more clear, use the abbreviation

Is(t
′, ε, k) ≡

∫ 0

−∞
dt
f(t+ t′)

(iε+ t)k
+

∫ ∞
0

dt
f(t+ t′)

(iε+ st)k
(64)

with s = ±1. When the sign is s = −1, (64) is the quantity in large parentheses
on the last line of (63). When the sign is s = +1, (64) gives the corresponding
quantity without time-ordering. If k ≥ 2, then we have the identity

(iε+ st)−k =
d

dt

(iε+ st)1−k

(1− k)s

Use this in (64) and integrate by parts to get

Is(t
′, ε, k) =

1

1− k

(
−
∫ 0

−∞
dt

ḟ(t+ t′)

(iε+ t)k−1
−
∫ ∞

0

dt
ḟ(t+ t′)

(iε+ st)k−1s

)

+
1

1− k

(
f(t′)

(iε)k
− f(t′)

(iε)ks

)
(65)

where ḟ ≡ df/dt. The quantities on the second line are the boundary terms from
integration by parts. When s = +1, the boundary terms cancel each other, but
when s = −1 they don’t, so the integral (63) diverges as ε→ 0.103

Taking ε → 0 corresponds to taking the smooth-space limit, and time-ordered
correlation functions in lorentzian spacetime correspond (via Wick rotation) to
correlation functions in euclidean spacetime. Thanks to those correspondences,
the result derived above shows that “smearing in euclidean time” is not effective
for k ≡ n(D − 1) ≥ 2,104 as promised in section 15.

103Dimensional analysis suffices to show that even if the integrals on the first line of (65) diverge as ε → 0, they
cannot diverge quickly enough to cancel the divergence on the second line, because the numerator ḟ(t + t′) is
independent of ε.
104Equation (60) introduced this definition of k, where n is the exponent in O ≡ (φn)R and D is the number of

dimensions of space.
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40 Exponential operator eicφ without smearing

The next series of sections (sections 40-43) illustrates the warning issued in section
18: an operator might be unhealthy even if it passes the norm test. In this example,
the “deceptive” normalization factor is already present in the näıve operator instead
of being introduced deliberately. This section shows that the näıve operator satisfies
the norm test but fails the average energy test.

Let φ(x) be a scalar field (possibly with self-interaction). Choose a real num-
ber c and consider the point-localized operator O(x) ≡ eicφ(x). This operator is
unitary, so it obviously passes the norm test. For the average energy test, use the
abbreviation |ψ〉 ≡ O|0〉 and the property H|0〉 = 0105 to get this identity:

〈ψ|H|ψ〉
〈ψ|ψ〉

=

〈
0
∣∣O†[H,O]

∣∣0〉
〈ψ|ψ〉

. (66)

The hamiltonian has the form (15) where V [φ] commutes with φ(x), so the com-
mutation relation (14) gives

[H,O(x)] =
1

2
εD
∑
x′

(
φ̇(x′)

[
φ̇(x′),O(x)

]
+
[
φ̇(x′),O(x)

]
φ̇(x′)

)
=
c

2

(
φ̇(x)O(x) +O(x)φ̇(x)

)
=
c

2
[φ̇(x),O(x)] +O(x)φ̇(x) =

c2

2εD
O(x) +O(x)φ̇(x).

Use this and (16) in (66) to get

〈ψ|H|ψ〉
〈ψ|ψ〉

=
c2

2εD
. (67)

This shows that O(x) fails the average energy test, which is expected because it is
localized at a point in spacetime.106

105Equation (5)
106This section used φ(x) and O(x) as abbreviations for φ(x, t = 0) and O(x, t = 0).
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41 Correlation functions of eicφ

This section shows that correlation functions of the (unrenormalized) exponential
operator eicφ(x) are not well-behaved.

Let φ(x) be a free scalar field, choose a real number c, and define

O(x) ≡ eicφ(x). (68)

To evaluate the correlation function 〈0|O†(y)O(x)|0〉, let φ±(x) denote the energy
raising/lowering parts of φ(x).107 If A and B are operators whose commutator
[A,B] is proportional to the identity operator, then108 eAeB = eA+B+[A,B]/2. Use
this and equation (22) to get

eicφ
−(x)eicφ

+(y)ec
2g(x−y)/2 = eic(φ

+(y)+φ−(x)) = eicφ
+(y)eicφ

−(x)e−c
2g(x−y)/2. (69)

with g(x) defined by (22). A similar manipulation gives

eic(φ(x)−φ(y)) =
(
eic(φ(x)−φ(y))+

)(
eic(φ(x)−φ(y))−

)
e−2c2h(x−y)

with
h(x) ≡ g(0)− g(x) ≥ 0,

so the correlation function is

〈0|O†(y)O(x)|0〉 = 〈0|eic(φ(x)−φ(y))|0〉 = e−2c2h(x−y). (70)

This is well-defined in discrete space, but something strange happens in the smooth-
space limit. For |x| � ε, the smooth-space limit of g(x) has the form

g(x) ∼ 1

|x|D−1
,

107Equation (17)
108Article 89053
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which is finite for all finite |x|, but the quantity g(0) diverges. As a result, the
smooth-space limit of the function e−2c2h(x−y) is zero whenever x 6= y. In that
limit, equation (70) says that the states O(x)|0〉 are mutually orthogonal for all x.
The values of x form a continuum, but any set of mutually orthogonal states in
a separable space is countable, so the states O(x)|0〉 cannot all belong to a single
separable Hilbert space.

Intuitively, the width of a function is inversely related to the width of its Fourier
transform: finer resolution in space involves larger momenta, which implies larger
energies in a Lorentz-symmetric model. The fact that the correlation function (70)
has zero width as a function of x− y implies that the operator O(x) has infinitely
fine resolution in space, so we should expect it to violate the energy condition. This
is consistent with the result derived in section 40.

Section 17 mentioned that any operator can be made to satisfy the norm test.
Example: O(x) ≡ φ(x)/

√
〈0|φ2(x)|0〉 satisfies the norm test, but it also makes all

the states O(x)|0〉 orthogonal to each other in the smooth-space limit, which is
inconsistent with a separable Hilbert space and with not-infinitely-fine resolution.
The operator (68) is an example in which this phenomenon occurs unintentionally.
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42 Correlation functions of (eicφ)R

This section shows that normal-ordering fixes the problem that was described in
section 41.

For each c ∈ R, the normal-ordered exponential operator is109

O(x) ≡ (eicφ(x))R ≡ eicφ
+(x)eicφ

−(x). (71)

The operator eicφ(x) is unitary, but for most values of c equation (69) shows that
the operator O(x) is not unitary:

O(x) = eicφ(x)ec
2g(0)/2 ⇒ O†(x)O(x) = |ec2g(0)| 6= 1. (72)

The quantity g(0) diverges in the smooth-space limit, so the operator O(x) fails
the norm test:

〈0|O†(x)O(x)|0〉 = ec
2g(0). (73)

On the other hand, its 2-point correlation function is well-behaved:110

〈0|O†(x)O(y)|0〉 = 〈0|e−icφ−(x)eicφ
+(y)|0〉

= 〈0|eicφ+(y)e−icφ
−(x)|0〉 ec2g(x−y) (equation (69))

= ec
2g(x−y). (74)

Equation (72) says that the only difference between the normal-ordered and non-
normal-ordered operators is an overall divergent numeric factor – an example of
what section 18 called a deceptive factor.

109Equation (74) says that O(x) qualifies as a renormalized operator, as presumed by the notation in the title of
this section.
110The fact that the smooth-space limit of this 2-point function is not a power of |x− y| is mentioned in footnote

on the text after equation (2.6) in Witten (2023).
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43 (eicφ)R smeared in space: norm test

Section 42 showed that the renormalized-but-unsmeared exponential operator fails
the norm test. This section shows that smearing the operator in space does not
solve that problem: it still fails the norm test even when post-smeared in space.

Define O(x) as in section 42. Smear it in space to get O(f) ≡
∫
x f(x)O(x),

and use equation (74) to get

〈0|O†(f)O(f)|0〉 =

∫
x,y

f ∗(x)f(y)ec
2g(x−y).

If the smearing function is f(x) ∝ e−x
2/2σ2

, then a calculation like the one after
equation (48) gives

〈0|O†(f)O(f)|0〉 ∝ 1

σD

∫
x

e−x
2/4σ2

ec
2g(x) ∼ εD

σD
× ec2g(0).

This diverges as ε → 0 because the exponential increases much faster than the
factor εD decreases, so O(f) fails the norm test.
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44 (eicφ)R smeared in time: average energy test

Let φ be a free scalar field. For each c ∈ R, define the normal-ordered exponential
operator

O(x, t) ≡ (eicφ(x,t))R ≡ eicφ
+(x,t)eicφ

−(x,t). (75)

This generalizes (71) to any time t. Let O(f) denote the time-smeared operator

O(f) ≡
∫
dt f(t)O(0, t). (76)

This section shows that O(f) passes the average energy test.
We need to show that the ratio

〈ψ|H|ψ〉
〈ψ|ψ〉

|ψ〉 ≡ O(f)|0〉 (77)

remains finite in the smooth-space limit. We can do this by using the expansion

|ψ〉 =

∫
dt f(t)eicφ

+(0,t)|0〉 =
∑
n≥0

(ic)n

n!
|n〉 (78)

with

|n〉 ≡
∫
dt f(t)

(
φ+(0, t)

)n|0〉
and by using the explicit expression (18) for φ+(0, t). In both the numerator
and denominator of (77), the only nonzero terms are those with equal numbers of
energy raising and energy lowering operators. Use the smearing function f(t) =
f(0)e−t

2/2σ2

, the abbreviation ωk ≡ ω(pk), and the commutation relation for the
energy raising and energy lowering operators a†(p) and a(p) to get

〈n|n〉 = n!

∫
p1,...,pn

exp
(
− (ω1 + · · ·+ ωn)

2σ2
)

(2ω1) · · · (2ωn)
(79)

〈n|H|n〉 = n!

∫
p1,...,pn

exp
(
− (ω1 + · · ·+ ωn)

2σ2
)

(ω1 + · · ·+ ωn)

(2ω1) · · · (2ωn)
.
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Handling the cross-terms like in section 36 and using the subscript “nct” for “no
cross-terms” gives

〈n|n〉nct = n!αn 〈n|H|n〉nct = n!nαn−1β (80)

with

α ≡
∫
p

e−ω
2(p)σ2

2ω(p)
β ≡

∫
p

e−ω
2(p)σ2

ω(p)

2ω(p)
(81)

This gives

〈ψ|ψ〉nct =
∑
n≥0

(
|ic|n

n!

)2

n!αn =
∑
n≥0

(c2)n

n!
αn = ec

2α

〈ψ|H|ψ〉nct =
∑
n≥0

(
|ic|n

n!

)2

n!nαn−1β = β
∑
n≥1

(c2)n

(n− 1)!
αn−1 = c2βec

2α.

Now the same reasoning about the cross-terms that was used in section 38 gives

〈ψ|H|ψ〉
〈ψ|ψ〉

≤ 〈ψ|H|ψ〉
〈ψ|ψ〉

∣∣∣∣
nct

= c2β ∝ c2

σD
, (82)

which is manifestly finite in the smooth-space limit. This shows that the time-
smeared normal-ordered exponential operator (76) passes the average energy test.

The result 〈ψ|ψ〉 ≤ 〈ψ|ψ〉nct = ec
2α with α ∼ σ1−D shows that the same operator

also passes the norm test.
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