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Conformal Isometries
and the Wave Equation

Randy S

Abstract A conformal isometry is a transformation of spacetime that
leaves the metric invariant up to an overall scale factor that may vary from
one point to the next. This article shows that when N ≥ 2, the classical wave
equation in N -dimensional flat spacetime has symmetries corresponding to all
conformal isometries.
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1 Conformal isometries

Let x = (x0, x1, ..., xN−1) denote a point in N -dimensional spacetime,1 and write
∂a for the partial derivative with respect to xa. For most of this article, spacetime
is taken to be flat, and the components of the metric are

ηab =

{
±1 if a = b,

0 otherwise.

This includes the Minkowski metric as a special case, but the signature is arbitrary
in this article. Use the abbreviations2

x · y ≡ ηab x
aya ∂ · ∂ ≡ ηab∂a∂b,

where ηab are the components of the inverse metric, which in this case happen to
be the same as the original components ηab.

In this context, a conformal isometry3 is a diffeomorphism4 x→ x̂ for which

dx̂ · dx̂ = Ω2(x) dx · dx. (1)

Examples:3

• A conformal isometry for which Ω(x) = 1 is called an (ordinary) isometry.
Poincaré transformations are ordinary isometries in Minkowski spacetime.

• x→ λx with λ > 0 is called a dilation. In this case, Ω(x) = λ.

• x→ x/(x · x) is called an inversion. In this case, Ω(x) = 1/(x · x).

WhenN ≥ 3, all other conformal isometries are generated by these three examples.3

1The superscripts are indices, not exponents.
2I’m using the standard summation convention, with an implied sum over each index that occurs as both a

superscript and subscript in the same term.
3Article 38111
4In this context, a diffeomorphism is a smooth rearrangement of the points of spacetime (article 93875), but

not necessarily defined at all points in spacetime. The inversion x→ x/(x · x) is defined only where x · x 6= 0.
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2 Symmetries of the wave equation

This article is about symmetries of the wave equation

∂ · ∂φ(x) = 0 (2)

in N -dimensional spacetime, where φ(x) is a classical scalar field. The goal is to
show that if φ(x) satisfies the wave equation with N ≥ 2 and if x → x̂ is any

conformal isometry (equation (1)), then the field φ̂(x) defined by5

φ̂(x) ≡ ω(x)φ
(
x̂(x)

)
ω(x) ≡

(
Ω(x)

)(N−2)/2
(3)

also satisfies the wave equation at all points where x̂ is defined:

∂ · ∂φ̂(x) = 0. (4)

The transformation φ(x) → φ̂(x) defined by equation (3) is sometimes called a
conformal transformation, but that name is also used for other things.6 To
avoid equivocation, this article will call it a conformal fieldomorphism.7,8 The
goal is to show that if N ≥ 2, then all conformal fieldomorphisms are symmetries
of the wave equation.9

5Equation (1) doesn’t specify the sign of Ω(x), but equation (3) assumes the convention Ω(x) > 0.
6Appendix D in Wald (1984) uses the name conformal transformation for what many physicists (including this

article) call a Weyl transformation. Section 7.6.2 in Nakahara (1990) uses the name conformal transformation for
what this article calls a conformal isometry.

7This name is not standard. It builds on the name fieldomorphism that article 00418 used for a transformation
like φ(x)→ φ̂(x) ≡ φ(x̂), where x→ x̂ is an arbitrary diffeomorphism.

8Section 15 reviews the concept of a Weyl transformation, mainly for the purpose of distinguishing it from what
this article calls a conformal fieldomorphism.

9When N ≥ 3, they are also symmetries of the more general equation ∂ · ∂φ ∝ φ(N+2)/(N−2). Notice that the
exponent is an integer only if N = 4 or N = 6.
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3 Symmetries of the wave equation: examples

Article 49705 showed that if x→ x̂ is any diffeomorphism for which dx̂·dx̂ = dx·dx,
then the corresponding fieldomorphism (3) is a symmetry of the wave equation. In
this case, the factor ω(x) is equal to 1.

The easiest example with ω(x) 6= 1 is the conformal fieldomorphism correspond-
ing to a dilation x → λx with constant scale factor λ 6= 1. The fact that this is a
symmetry of the wave equation should be clear by inspection. The factor ω(x) is
still independent of x in this case.

The easiest example in which ω(x) is not independent of x is the conformal
fieldomorphism correponding to an inversion x→ x/(x · x). In this case, the scale
function in equation (1) turns out to be10 Ω(x) = 1/(x ·x), so the transformed field
is

φ̂(x) = ω(x)φ
( x

x · x

)
with ω(x) =

1

(x · x)(N−2)/2
. (5)

This is defined wherever x · x 6= 0. Straightforward calculation shows that this
function ω(x) satisfies

∂ · ∂ω(x) = 0

∂ · ∂
(
ω(x)x̂

)
= 0

wherever x · x 6= 0. Section 6 will use these properties of ω(x) to show that the

transformation φ(x)→ φ̂(x) defined by (5) is a symmetry of the wave equation.

10Article 38111
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4 Composing fieldomorphisms

The composition of two conformal isometries (the result of applying them sequen-
tially) is another conformal isometry. This is clear from the definition (1). This
section shows that the composition of two conformal fieldomorphisms (3) is another
conformal fieldomorphism that agrees with the composition of the corresponding
conformal isometries.

Since we’re dealing with two conformal isometries now, we need to use a notation
that distinguishes between them. If we use the operator-like notation

x→ σ1x x→ σ2x

for the two conformal isometries, then their composition (the result of applying σ1

and then σ2) is
x→ σ12x ≡ σ2σ1x.

These are conformal isometries, so the effect of each one on the line element may
be written

d(σ1x) · d(σ1x) = Ω2
1(x) dx · dx

d(σ2x) · d(σ2x) = Ω2
2(x) dx · dx

d(σ2σ1x) · d(σ2σ1x) = Ω2
12(x) dx · dx.

Use the first two equations to get

d(σ2σ1x) · d(σ2σ1x) = Ω2
2(σ1x) d(σ1x) · d(σ1x)

= Ω2
2(σ1x)Ω2

1(x) dx · dx,

which gives this equation for the scale function Ω12 of the composite transformation:

Ω12(x) = Ω2(σ1x)Ω1(x). (6)

Now, for any function φ(x) and any n ∈ {1, 2, 12}, define a transformation φ→ σnφ
by

σnφ(x) ≡ ωn(x)φ(σnx) (7)

6
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with
ωn(x) ≡ (Ωn(x))(N−2)/2 , (8)

as in equation (3). Equations (7) with n ∈ {1, 2} imply

σ2σ1φ(x) = ω1(x)σ2φ(σ1x) = ω1(x)ω2(σ1x)φ(σ2σ1x),

and comparing this to equation (7) with n = 12 gives

ω12(x) = ω2(σ1x)ω1(x), (9)

which is consistent with equations (6) and (8). This completes the derivation.

This would all still be true if ωn(x) =
(
Ωn(x)

)E
for any exponent E, but the

exponent shown in (8) is special because it makes ωn(x) satisfy the conditions (10)
and (11). This is easy to check by direct calculation when σn is the inversion
σnx = x/(x · x). The following sections explain how it can be inferred for other
conformal isometries.

The result derived in this section can be expressed using the language of category
theory.11 Conformal isometries may be regarded as the morphisms in a category
with just one object. That one object is the smooth manifold (spacetime) on
which the conformal isometries act. Conformal fieldomorphisms may be regarded
as the morphisms in another category with just one object. That one object is the
set of scalar fields that satisfy the wave equation (wherever they’re defined). In
both cases, the composition of two morphisms is another morphism, as required by
the definition of category. By expressing conformal fieldomoprhisms in terms of
conformal isometries, equations (3) define a functor from the conformal-isometries
category to the conformal-fieldomorphisms category. A functor converts morphisms
in one category to morphisms in another category, respecting composition.

11Spivak (2013) and McLarty (1992) are relatively inviting introductions to category theory.
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5 Strategy

The goal is to show that the transformations φ → φ̂ defined in equation (3) –
conformal fieldomorphisms – are symmetries of the wave equation (2) if N ≥ 2.
Here’s an outline:

• Section 6 will show that a conformal fieldomorphism is a symmetry of the
wave equation if ω satisfies the conditions

∂ · ∂ω(x) = 0 (10)

∂ · ∂
(
ω(x)x̂

)
= 0 (11)

wherever it is defined.

• Sections 7-8 will use a different method, involving the action principle, to
show that a conformal fieldomorphism is a symmetry of the wave equation if
ω satisfies the condition (10).12

• Sections 9-10 will show that if two conformal isometries both satisfy the
conditions (10)-(11), then so does their composition.13

• Sections 11 use that result to show that every conformal isometry satisfies
the conditions (10)-(11) if N ≥ 2. This implies that all of the corresponding
conformal fieldomorphisms are symmetries of the wave equation.

For extra fun, sections 12-14 review how the embedding space formalism can be
used to study conformal fieldomorphisms.14

12This approach doesn’t use the condition (11) explicitly, but it does use the fact that ω(x) is defined by equations
(1) and (3), which the subsequent sections use to show that ω satisfies the conditions (10) and (11).

13Actually the proof shown here is incomplete, because the composition of two conformal isometries may be defined
everywhere (by continuation) even if the conformal isometries that went into it are not. Example: composing the
inversion x→ x/(x · x) with itself gives the identity transformation, which is defined everywhere, in the same sense
that (x · x)/(x · x) = 1. The proof shown here doesn’t include the continuation step.

14Article 38111 uses the embedding space formalism to study conformal isometries (equation (1)).
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6 Direct approach

This section shows that if φ(x) is any solution of the wave equation (2), and if ω

satisfies the conditions (10) and (11),15 then the new field φ̂(x) defined in (3) is
another solution of the wave equation.

Start with the elementary identities

∂ · ∂φ̂(x) = ∂ · ∂
(
ω(x)φ(x̂)

)
=
(
∂ · ∂ω(x)

)
φ(x̂) + 2

(
∂ω(x)

)
· ∂φ(x̂) + ω(x)∂ · ∂φ(x̂). (12)

Use the abbreviation ∂̂a ≡ ∂/∂x̂a to get

∂φ(x̂) = (∂x̂a)∂̂aφ(x̂) (13)

∂ · ∂φ(x̂) = ∂ ·
(
(∂x̂a)∂̂aφ(x̂)

)
= (∂ · ∂x̂a)∂̂aφ(x̂) + (∂x̂a) · ∂∂̂aφ(x̂)

= (∂ · ∂x̂a)∂̂aφ(x̂) + (∂x̂a) · (∂x̂c)∂̂c∂̂aφ(x̂) (14)

To continue, use the general identity

dx̂a = dxb (∂bx̂
a) (15)

to see that (1) implies
ηcd(∂ax̂

c)(∂bx̂
d) = Ω2(x)ηab, (16)

which in turn implies16

(∂x̂a) · (∂x̂b) = Ω2(x)ηab. (17)

Equation (17) implies

(∂x̂a) · (∂x̂c)∂̂c∂̂a = Ω2(x)∂̂ · ∂̂,
15For the rest of this article, the qualification “wherever the conformal isometry is defined” is understood.
16To derive this, let η be the matrix with components ηab, and let M be the matrix with components Mab ≡ ∂ax̂b.

Then equation (16) is MηMT = Ω2η. Take the matrix inverse of both sides and then re-arrange to get MT η−1M =
Ω2η−1, which is equation (17).
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and the assumption that φ(x) satisfies the wave equation (∂ · ∂φ(x) = 0) implies

∂̂ · ∂̂φ(x̂) = 0 just by relabeling the coordinates, so the last term in equation (14)
is zero. Use these results in (12) to get

∂ · ∂φ̂(x) =
(
∂ · ∂ω(x)

)
φ(x̂) + Γa∂̂aφ(x̂) (18)

with
Γa ≡ 2

(
∂ω(x)

)
· (∂x̂a) + ω(x)(∂ · ∂x̂a). (19)

The condition (10) implies that the quantity Γa may also be written

Γa = ∂ · ∂
(
ω(x)x̂a

)
. (20)

Equations (18) and (20) show that φ̂(x) satisfies the wave equation if ω(x) satisfies
the conditions (10) and (11).

10
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7 Approach using the action principle

This section shows that if φ(x) is any solution of the wave equation (2), and if ω

satisfies the condition (10), then the new field φ̂(x) defined in (3) is another solution
of the wave equation. In contrast to the approach that was used in section 6, the
approach used here involves only first-order derivatives of the field.

The wave equation (2) can be written as17

δS[φ]

δφ(x)
= 0

where S[φ] is the action18

S[φ] =

∫
dNx (∂φ) · (∂φ). (21)

Now suppose that x→ x̂ is any conformal isometry, not necessarily satisfying the
condition (10). Section 8 shows that replacing the original scalar field φ(x) with
the new scalar field (3) has this effect on the action:

S[φ̂] = ±S[φ] +

∫
dNx ∂ · (something)−

∫
dNx φ2(x̂)ω(x)∂ · ∂ω(x). (22)

Adding a total-derivative term to S doesn’t affect the equation of motion (21), so
the result (22) implies that if φ(x) satisfies the wave equation and ω satisfies the

condition (10), then φ̂(x) also satisfies the wave equation.

17Article 49705
18I’m omitting a conventional but inconsequential overall factor of 1/2.
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8 Approach using the action principle: details

To derive (22), start with

S[φ̂] =

∫
dNx

(
∂φ̂(x)) ·

(
∂φ̂(x)). (23)

Equation (3) gives

∂aφ̂(x) = ω(x)∂aφ(x̂) + φ(x̂)∂aω(x),

and using this in (23) gives

S[φ̂] = S1[φ] + S2[φ] (24)

with

S1[φ] ≡
∫
dNx ω2(x)

(
∂φ(x̂)) ·

(
∂φ(x̂)) (25)

and

S2[φ] ≡
∫
dNx

[
2ω(x)φ(x̂)

(
∂φ(x̂)

)
·
(
∂ω(x)

)
+ φ2(x̂)

(
∂ω(x)

)
·
(
∂ω(x)

)]
=

∫
dNx ∂ ·

(
ω(x)φ2(x̂)∂ω(x)

)
−
∫
dNx φ2(x̂)ω(x)∂ · ∂ω(x). (26)

To get a more useful expression for S1[φ], use the general identity

∂a = (∂ax̂
c)∂̂c

to write it as

S1[φ] =

∫
dNx ω2(x)(∂x̂a) · (∂x̂b)

(
∂̂aφ(x̂)

)(
∂̂bφ(x̂)

)
. (27)

Use (17) in (27) to get

S1[φ] =

∫
dNx ω2(x)Ω2(x)

(
∂̂φ(x̂)

)
·
(
∂̂φ(x̂)

)
. (28)

12
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The identity (15) implies

dNx =
dN x̂

|∂x̂|
(29)

where |∂x̂| is the determinant of the matrix with components ∂bx̂
a, and equation

(16) implies

|∂x̂|2 =
(
Ω2(x)

)N
. (30)

Use (29), (30), and the definition of ω in (28) to get

S1[φ] = ±
∫
dN x̂

(
∂̂φ(x̂)

)
·
(
∂̂φ(x̂)

)
= ±S[φ]. (31)

Combining (24), (26), and (31) gives the promised result (22).

13
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9 Condition (10)

As in section 4, consider two conformal isometries σ1 and σ2. This section shows
that if ω1(x) and ω2(x) both satisfy condition (10), then so does ω12(x). The
notation here is the same as in section 4, and the abbreviations

x̂ ≡ σ1x ∂̂ ≡ ∂

∂x̂

will also be used.
Equation (9) combined with ∂ · ∂ω1(x) = 0 implies

∂ · ∂ω12(x) = 2
(
∂ω1(x)

)
· ∂ω2(σ1x) + ω1(x)∂ · ∂ω2(σ1x)

= 2
(
∂ω1(x)

)
· (∂x̂a)∂̂aω2(x̂) + ω1(x)∂ ·

(
(∂x̂a)∂̂aω2(x̂)

)
= 2
(
∂ω1(x)

)
· (∂x̂a)∂̂aω2(x̂) + ω1(x)(∂ · ∂x̂a)∂̂aω2(x̂)

+ ω1(x)(∂x̂b) · (∂x̂a)∂̂b∂̂aω2(x̂).

Use equation (17) and ∂̂ · ∂̂ω2(x̂) = 0 to see that the last term is zero, which leaves

∂ · ∂ω12(x) =
[
2
(
∂ω1(x)

)
· (∂x̂a) + ω1(x)(∂ · ∂x̂a)

]
∂̂aω2(x̂)

=
[
∂ · ∂

(
ω1(x)x̂a

)
− x̂a∂ · ∂ω1(x))

]
∂̂aω2(x̂).

The assumption that ω1(x) satisfies the conditions (10) and (11) implies that the
quantity in square brackets is zero, so this proves that ω12(x) satisfies condition
(10).

14
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10 Condition (11)

This section shows that if ω1(x) and ω2(x) both satisfy condition (11), then so does
ω12(x). More explicitly: if

∂ · ∂
(
ω1(x)σ1x

)
= 0 (32)

∂ · ∂
(
ω2(x)σ2x

)
= 0, (33)

then
∂ · ∂

(
ω12(x)σ12x

)
= 0. (34)

The notation here is the same as in section 9.
Equation (9) combined with ∂ · ∂ω1(x) = 0 implies

∂ · ∂
(
ω12(x)(σ12x)a

)
= ∂ ·

[
ω2(x̂)(σ2x̂)a∂ω1(x) + ω1(x)∂

(
ω2(x̂)(σ2x̂)a

)]
= ∂ ·

[
ω2(x̂)(σ2x̂)a∂ω1(x) + ω1(x)(∂x̂b)∂̂b

(
ω2(x̂)(σ2x̂)a

)]
Use equations (17) and (33) in the last term to get

∂ · ∂
(
ω12(x)(σ12x)a

)
= ∂ · [ω2(x̂)(σ2x̂)a∂ω1(x)] + ∂ ·

[
ω1(x)(∂x̂b)

]
∂̂b
(
ω2(x̂)(σ2x̂)a

)
.

Use ∂ · ∂ω1(x) = 0 in the first term to get

∂ · ∂
(
ω12(x)(σ12x)a

)
= ∂ [ω2(x̂)(σ2x̂)a] · ∂ω1(x) + ∂ ·

[
ω1(x)(∂x̂b)

]
∂̂b
(
ω2(x̂)(σ2x̂)a

)
= (∂x̂b)∂̂b [ω2(x̂)(σ2x̂)a] · ∂ω1(x) + ∂ ·

[
ω1(x)(∂x̂b)

]
∂̂b
(
ω2(x̂)(σ2x̂)a

)
,

and use ∂ · ∂ω1(x) = 0 again to get

∂ · ∂
(
ω12(x)(σ12x)a

)
= ∂̂b

(
ω2(x̂)(σ2x̂)a

) [
∂ · ∂

(
ω1(x)x̂b

)]
.

Equation (32) implies that the quantity in square brackets is zero, which proves
(34).

15
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11 The main result

When N ≥ 3, the group of conformal isometries is generated by ordinary isometries,
dilations, and inversions.19 We already know20 that these transformations satisfy
the conditions (10) and (11), so the results derived in sections 6-10 imply that all
conformal isometries correspond – via (3) – to symmetries of the wave equation
when N ≥ 3.

When N = 2, ω is independent of x, so the conditions (10) and (11) reduce to
the condition

∂ · ∂x̂ = 0. (35)

The line element may be written

dx · dx ∝ du dv

with
u ≡ x0 + x1 v ≡ x0 − x1

if the signature is lorentzian (Minkowski spacetime), or with

u ≡ x0 + ix1 v ≡ x0 − ix1

if the signature is euclidean, where i2 = −1. In either case, the condition (35) may
be written21

∂

∂u

∂

∂v
û = 0

∂

∂u

∂

∂v
v̂ = 0.

According to sections 2.3 and 2.5 Schottenloher (2008), all conformal isometries
satisfy these conditions when N = 2, so the conclusion of the preceding paragraph
extends to N ≥ 2.

19Section 1
20Section 3
21In the euclidean case, ∂/∂u ≡ 1

2 (∂0 − i∂1) and ∂/∂v ≡ 1
2 (∂0 + i∂1).

16
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12 A quick review of the embedding space formalism

Article 38111 introduces the embedding space formalism, which relates at least
some conformal isometries of the original N -dimensional spacetime M to origin-
preserving ordinary isometries of an (N + 2)-dimensional spacetime in whichM is
embedded.22 This section reviews the idea, and section 13 applies it to the wave
equation.

Consider an (N+2)-dimensional manifold with coordinatesX ≡ (X0, X1, ..., XN−1)
and Y and Z, where Y and Z are individual real-valued coordinates, and with the
metric defined implicitly by the line element23

dX · dX + dY 2 − dZ2. (36)

I’ll call this the ambient manifold.24,25 Let C be the “cone” defined by

X ·X + Y 2 − Z2 = 0, (37)

and let P be the hyperplane defined by

Y + Z = R (38)

for some constant R. We can use

xa ≡ Xa

Y + Z
(39)

as coordinates on the N -dimensional intersection C ∩ P , everywhere except where
Y + Z = 0. Article 38111 shows that the induced metric in this N -dimensional
manifold is conformally equivalent the Minkowski metric dx · dx and that origin-
preserving ordinary isometries of the ambient manifold correspond to conformal
isometries of the N -dimensional manifold.

22Weinberg (2010) describes how tensor fields in Minkowski spacetime can be represented using this formalism.
23As in the preceding sections, X ·X ≡ ηabXaXb for any quantity X with N components.
24It’s also called the embedding space, because the spacetime of interest – Minkowski spacetime – will be

embedded inside it.
25Mnemonic: I’m using uppercase letters for coordinates in the bigger (higher-dimensional) manifold, and lowercase

letters for coordinates in the smaller manifold (Minkowski spacetime).

17
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13 Embedding space and the wave equation

The embedding space formalism can be used to relate the symmetries of the
wave equation in N -dimensional spacetime to ordinary isometries in the (N + 2)-
dimensional embedding space. Let Φ(X, Y, Z) be a function that satisfies this
(N + 2)-dimensional version of the wave equation:

∂X · ∂XΦ + ∂2
Y Φ− ∂2

ZΦ = 0. (40)

All origin-preserving isometries of (36) correspond to symmetries of equation (40)
in the usual way. To relate these to the symmetries (3) of the wave equation in
N -dimensional Minkowski spacetime, consider functions of the form26

Φ(X, Y, Z) = (Y + Z)−(N−2)/2 f

(
X

Y + Z
,
Y − Z
Y + Z

)
. (41)

Section 14 shows that applying the differential operator

∂X · ∂X + ∂2
Y − ∂2

Z (42)

to such a function and then imposing the constraints (37) and (38) gives the same
result as applying the differential operator ∂x · ∂x to

φ(x) ≡ R−(N+2)/2 f

(
x,
−x · x
R2

)
. (43)

In particular, if the function (41) satisfies (40) everywhere on C ∩ P , then the
function (43) satisfies the usual wave equation in Minkowski spacetime.

26This is equation (37) in Bars (2000), but beware: that paper uses the same symbol λ for two different things on
the same page. The two different meanings of λ are introduced implicitly in equations (26) and (31) of that paper.

18
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14 Embedding space and the wave equation: details

This section shows that applying the differential operator (42) to any function of
the form (41) and then imposing the constraints (37) and (38) gives the same result
as applying the differential operator ∂x · ∂x to the function (43).27

The coordinates X, Y, Z can be written as

Y + Z = σ Y − Z = ρ X = σx

wherever σ 6= 0. This is consistent with (39). Use the generic identity28

∑
a

dXa ∂

∂Xa
+ dY ∂Y + dZ ∂Z =

∑
a

dxa
∂

∂xa
+ dρ ∂ρ + dσ ∂σ (44)

to infer29

∂

∂xa
= σ

∂

∂Xa

∂

∂ρ
=

1

2
(∂Y − ∂Z)

∂

∂σ
=
∑
a

xa
∂

∂Xa
+

1

2
(∂Y + ∂Z) =

1

σ

∑
a

xa
∂

∂xa
+

1

2
(∂Y + ∂Z)

and uses these to infer that the differential operator in (40) may be written

∂X · ∂X + ∂2
Y − ∂2

Z = ∂X · ∂X + (∂Y + ∂Z)(∂Y − ∂Z)

=
1

σ2
∂x · ∂x + 4

(
∂

∂σ
− 1

σ

∑
a

xa
∂

∂xa

)
∂

∂ρ
.

27The approach used here is a slight variation of the approach used in Bars (2000), section 4.1.
28This identity holds for any two coordinate systems X,Y, Z and x, ρ, σ, no matter how they’re related to each

other (as long as each one can be written in terms of the other).
29To deduce this, write dX, dY, dZ in terms of dx, dρ, dσ and substitute those expressions for dX, dY, dZ into the

left-hand side of (44).
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Equation (41) may also be written

Φ = σ−(N−2)/2f(x, ρ/σ).

Any function of this form satisfies(
∂

∂σ
− 1

σ

∑
a

xa
∂

∂xa

)
∂

∂ρ
Φ =

(
∂

∂σ
− 1

σ

∑
a

xa
∂

∂xa

)
1

σ
Φ1

=
−1

σ2

(
N

2
Φ1 +

ρ

σ
Φ2 +

∑
a

xa
∂

∂xa
Φ1

)
(45)

with

Φ1 ≡ σ−(N−2)/2 ∂

∂y
f(x, y)

∣∣∣∣
y=ρ/σ

Φ2 ≡ σ−(N−2)/2 ∂2

∂y2
f(x, y)

∣∣∣∣
y=ρ/σ

.

This is true even if Φ doesn’t satisfy (40). On the other hand, any function of the
form (43) satisfies

∂x·∂xf(x, y) =

[
∂x · ∂xf(x, y)− N

2
f1(x, y) +

x · x
R2

f2(x, y)−
∑
a

xa
∂

∂xa
f1(x, y)

]
y=−x·x/R2

with

f1(x, y) ≡ ∂

∂y
f(x, y) f2(x, y) ≡ ∂2

∂y2
f(x, y).

According to equations (37) and (38), points on the intersection C ∩ P satisfy

σ = R ρ =
−x · x
R

,

Use this in the last line of equation (45) to complete the derivation.
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15 Weyl invariance

Section 2 defined some symmetries of the wave equation. Those symmetries mix
the scalar field’s values at different points of spacetime with each other in the same
way that conformal isometries mix the points of spacetime itself, and they don’t
transform the metric field at all.

In contrast, a Weyl transformation30 does affect the metric field but doesn’t
mix the fields’ values in different regions with each other:

φ(x)→ Ωs(x)φ(x) gab(x)→ Ω2(x)gab(x) (46)

where s ∈ R is called the conformal weight of the scalar field. To say anything
about what a Weyl transformation does to the action (or equation of motion) for
a scalar field, we first need to specify how the action depends on the metric field.
One natural choice is31

S[g, φ] =

∫
dNx

√
|g| gab(∂aφ)(∂bφ) (47)

where gab(x) are the components of a metric tensor, gab(x) are the components of
its inverse, and |g|(x) is its determinant. When N = 2, the action (47) is invariant
under Weyl transformations (46) with s = 0.32 When N 6= 2, the action (47) is not
invariant under Weyl transformations (46) for any s, but the modified action

S ′[g, φ] =

∫
dNx

√
|g|
(
gab(∂aφ)(∂bφ) +

N − 2

4(N − 1)
Rφ2

)
(48)

is invariant up to a total derivative under Weyl transformations with33,34 s =

30Article 38111
31Section 16 reviews why this choice is natural.
32In more detail: the only part of the integrand affected by this transformation is the metric-dependent factor√
|g| gab, and the transformation (46) leaves this invariant when N = 2.
33Section 22.3 in Blau (2021). Beware that Blau quietly ignores the total-derivative term, acknowledging its

existence only in the text above equation (22.115).
34Appendix D in Wald (1984) derives this using the equation of motion instead of the action. The equation of

motion is not affected by the total-derivative term that a typical Weyl transformation adds to the action.
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(2 − N)/2 when N ≥ 2, where R is the Ricci scalar constructed from the cur-
vature tensor.35 This property of (48) is called Weyl invariance or conformal
invariance,36 but beware that the names conformal transformation, conformal
invariance, and conformal symmetry are all overloaded in the physics literature.

A symmetry that doesn’t mix the fields’ values in different regions with each
other is called an internal symmetry, so Weyl invariance is an example of an
internal symmetry.

35This is not related to the constant R in section 12.
36Wald (1984), appendix D
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16 General covariance

The action (47) is a natural choice because it has a property that is sometimes
called general covariance: for any diffeomorphism x→ x̂, replacing the original
fields φ(x) and gab(x) with the new fields

φ̂(x) ≡ φ(x̂) ĝab(x) ≡ gcd(x̂)(∂ax̂
c)(∂bx̂

d) (49)

leaves the action invariant:
S[ĝ, φ̂] = S[g, φ].

To derive this, use the identities37

∂aφ̂(x) = (∂ax̂
b)∂̂bφ(x̂) ĝab(x) = gcd(x̂)(∂̂cx

a)(∂̂dx
b) (50)

to get
ĝab(x)

(
∂aφ̂(x)

)(
∂bφ̂(x)

)
= gab(x̂)

(
∂̂aφ(x̂)

)(
∂̂bφ(x̂)

)
,

and use the definition of ĝab(x) to get

dNx
√
|ĝ(x)| = dN x̂

√
|g(x̂)|.

The modified action (47) has this property, too.

37 To derive the second identity, let G(x̂) and Ĝ(x) be the matrices with components gab(x̂) and ĝab(x), respectively.
Let M be the matrix with components Mab = ∂ax̂

b. Then the second equation in (49) is Ĝ(x) ≡ MG(x̂)MT . Take
the matrix inverse of both sides to get Ĝ−1(x) = (MT )−1G−1(x̂)M−1. This is the second equation in (50).
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