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Universality and Continuum Limits
with Scalar Quantum Fields

Randy S

Abstract In quantum field theory, a model’s predictions at sufficiently
low resolution often depend only on relatively few details of the model’s
construction. This is called universality. Thanks to universality, finding
models that accurately reproduce the results of low-resolution measurements
doesn’t require getting all of the high-resolution details exactly right. The
key is knowing which combinations of high-resolution details do matter at
much lower resolutions. This article introduces some of the basic ideas that
lead to that insight, emphasizing how those ideas relate to the act of taking
(near-)continuum limits of models that were initially defined by treating
spacetime as a lattice. Models that involve only scalar fields are used as
examples.
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1 Introduction

Real measurements have limited resolution. To achieve finer resolution, we need to
use more energy.1 This limitation of real measurements is important in quantum
field theory (QFT), because two models may be practically indistinguishable from
each other at low energies (low resolution) even if they differ significantly from
each other at higher energies (finer resolution). This mathematical phenomenon is
called universality, the subject of this article.

Universality can be a nuisance, because it restricts how much we can learn about
nature from experiments that have limited energy. Universality is also beneficial,
though, because it means that we can often construct relatively simple but accurate
models of low-energy phenomena without including all of the details of higher-
energy phenomena.

This article emphasizes another benefit of universality. In QFT, spacetime is
often treated as a lattice for the purpose of constructing models nonperturbatively.
In that case, we only care about the model’s predictions at resolutions much coarser
than the lattice scale, because the lattice is artificial. Thanks to universality, those
low-energy predictions may be practically unaffected by lattice artifacts.2

Much of what we currently know about quantum field theory in d-dimensional
spacetime with d ≥ 3 comes from analyzing models that are close to trivial fixed
points,3 because that’s where most of our mathematical tools work best.4 This ar-
ticle emphasizes concepts that also apply in the vicinity of nontrivial fixed points,3,5

even though the examples given are all in the vicinity of a trivial fixed point.

1Heuristically, this is because finer resolution means discerning the effects of smaller translations in space, which
requires using larger momenta (because the momentum observables are the generators of translations in space),
which implies larger energy (because in a Lorentz-symmetric model, the energy of an isolated probe cannot be less
than the magnitude of its momentum).

2Lüscher (1987), section 2
3This will be defined in section 4.
4Article 22212 introduces one of these tools.
5Section 1 in Giuliani et al (2021) briefly reviews why physicists are relatively confident that the generalized

concepts are valid even though many of the calculations we wish we could do are still beyond the reach of known
mathematical methods.

4



cphysics.org article 10142 2024-12-14

2 Conceptual challenges

To study universality, we need to be clear about what we mean when we say that
two models are practically indistinguishable from each other at low energies. This
presents two basic conceptual challenges:

• Given a correspondence between the two models’ observables, how should we
quantify whether differences in their predictions are large or small? Large or
small compared to what?

• Even more abstractly, what if a correspondence between the two models’
predictions is not specified? Each model makes a set of many predictions,
nominally infinitely many. How should we compare two unordered sets of
predictions?

These challenges can be addressed using the renormalization group concept that
will be introduced in sections 3-7.
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3 The reversible renormalization group

In quantum field theory, observables are associated with regions of spacetime.6

Let Ω(R) denote the set of observables associated with the region R, and let M
denote the model defined by this association. For now, suppose that spacetime
is being treated as a smooth manifold. For any scale factor λ > 0, define λR
to be the region consisting of the points with coordinates (λx1, λx2, ... λxd) for all
(x1, x2, ... xd) ∈ R, where d is the number of dimensions of spacetime. We can
define a new model M ′ whose sets Ω′(R) of local observables are defined by7

Ω′(R) = Ω(λR). (1)

These transformations constitute one version of the renormalization group (RG).
Intuitively, if the transformation (1) could be implemented in the real world, it could
be used as a lens to “zoom out” (λ > 1) or “zoom in” (λ < 1) on the original model.
Like a real lens, this would be useful for matching the features of interest to the
resolution of our measuring devices (analogous to the size of the pixels in a digital
camera). Zooming out (λ > 1) is often called flowing toward the infrared (IR),
and zooming in (λ < 1) is often called flowing toward the ultraviolet (UV).
This article considers only flows toward the infrared (λ > 1).

The RG defines a flow in the space of possible models: if we start with one model
and gradually slide the factor λ away from 1, then the corresponding sequence of
transformations (1) traces out a specific path in the space of possible models. These
transformations are reversible in the sense that the transformation with scale factor
λ can be un-done by applying the transformation with scale factor 1/λ. I’ll call (1)
the reversible renormalization group to distinguish it from another version of the
RG that will be defined in section 7.8

6Article 21916
7A scale transformation (1) is often called a dilation or dilatation. The version with the extra syllable al-

legedly predates the shortened version (https://english.stackexchange.com/questions/160496), but both are
commonly used in physics today with no difference in meaning.

8Group normally implies reversibility, but the version defined in section 7 is not reversible. Renormalization
semigroup would be a better name for that version, but the evolution of language is not reversible.
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4 Scale symmetry and fixed points

A model whose predictions look the same at all scales is called scale invariant,
and this property of the model is called scale invariance or scale symmetry.9,10

More precisely, scale symmetry is a statement about the relationship between
observables and regions of spacetime. Let Ω(R) be the set of observables localized
in a region R of spacetime. In a model with scale symmetry, if all distances and
time intervals are multiplied by λ > 0, then there is a unitary transformation U(λ)
such that

Ω(λR) = U−1(λ)Ω(R)U(λ) (2)

for all R. Models with this symmetry are exceptional: most models don’t have this
symmetry. The massless free scalar model is one that does.

Equations (1) and (2) imply that if a reversible RG transformation is applied
to a scale-invariant model, then the resulting model is unitarily equivalent to the
original one. In this case, the “path” traced by (1) doesn’t go anywhere – it stays
where it started. For this reason, scale-invariant models are called fixed points
of the renormalization group.11 The simplest examples of scale-invariant models
are massless models with no interactions. They’re called trivial fixed points12

because they lack interactions. Other scale-invariant models are called nontrivial
fixed points. Our knowledge of of nontrivial scale-invariant models in dimensions
d ≥ 3 is still relatively immature,13,14 so this article focuses mostly on the vicinity
of trivial fixed points – while still trying to describe many of the general concepts
in ways that are expected to apply near arbitrary fixed points.

9Sometimes the word scale is replaced by dilation or dilatation (footnote 7).
10In QFT, models with scale symmetry tend to have an even larger symmetry called conformal symmetry

(Nakayama (2015)), which includes the scale symmetry group as a subgroup (article 38111). Examples of exceptions
are mentioned in Riva and Cardy (2005) and in Komargodski (2012).

11When the renormalization group is cast as a system of ordinary first-order differential equations for the parameters
in the action (article 22212), fixed points are sometimes also called critical points (Sfondrini (2013)), but physicists
often use that name for something related-but-different (section 23).

12Trivial fixed points are also called gaussian fixed points, a name that describes the form of the path integral.
13Cappelli et al (2017)
14In contrast, our knowledge of conformally-invariant models in d = 2 is voluminous (Di Francesco et al (1997)).
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5 Operators with scaling dimensions

By definition, a scale-invariant model admits a group of unitary operators U(λ), one
for each λ > 0, satisfying the condition (2). The effect of such a scale transformation
on some observables – or, more generally, some operators – is especially simple.
Let O(x) be a collection of operators,15 one for each point x in spacetime, that are
related to each other by translations in spacetime.16 In a scale-invariant model,
some of these collections satisfy

U−1(λ)O(x)U(λ) = λ∆O(λx) (3)

for some real number ∆. Such an operator O(x) is said to have scaling dimension
∆. In the massless free scalar model in d-dimensional spacetime, the operator ∂φ
(the derivative of the field)17 has scaling dimension d/2.

This definition only makes sense at a fixed point (a scale-invariant model),
because only then do unitary operators U(λ) satisfying the condition (2) exist.18

15Here, I’m using the word operators in a broad sense. They may not actually be defined as ordinary operators
on the Hilbert space in continuous spacetime, not even when smeared over a neighborhood of the point x, but they
are objects whose n-point correlations functions are well-defined as long as the points are all distinct (article 23277).
They are ordinary operators when spacetime is treated as a lattice, but equation (3) treats spacetime as a continuum.
Section 20 will distill a useful insight from this apparent tension.

16This condition assumes that the model has translation symmetry: for any translation x→ x+δx, the observable-
sets Ω(R) and Ω(R + δx) are related to each other by a unitary transformation: Ω(R + δx) = U−1(δx)Ω(R)U(δx).
The required property of the collection of operators O(x) is then expressed as O(x+ δx) = U−1(δx)O(x)U(δx).

17In the massless free scalar model, the field φ(x) itself is not a local observable, because the zero-momentum part
must be excluded (article 37301).

18Footnote 21 in section 6 will highlight another way to define scaling dimensions.
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6 Scaling dimensions and the cluster property

Consider a scale-invariant model, and let O1(x) and O2(x) be local operators with
scaling dimensions ∆1 and ∆2, respectively. The unitary operators U(λ) leave the
vacuum state |0〉 invariant, as long as the scale symmetry is not spontaneously
broken.19 This invariance combined with equation (3) implies

〈0|O1(x1)O2(x2)|0〉 = λ∆1+∆2〈0|O1(λx1)O2(λx2)|0〉.

Translation symmetry and Lorentz symmetry imply that the left-hand side depends
on x1 and x2 only through the combination |x1 − x2|, which is translation- and
Lorentz-invariant.20 Combine this with the preceding equation to infer that the
two-point function has the form21

〈0|O1(x1)O2(x2)|0〉 ∝
1

|x1 − x2|∆1+∆2
. (4)

According to the cluster property,22 the two-point function must decrease with
increasing distance between the two points, at least asymptotically. This implies
that all scaling dimensions must be positive (∆ > 0).23

If a model is not scale invariant, then its correlation functions may involve one
or more fixed length scales. Example: for large r ≡ |x1 − x2|, a typical asymptotic
form for a two-point function is ∼ r−αe−r/ξ for some exponent α > 0 and some
correlation length ξ > 0. In a non-empty24 scale-invariant model, the correlation
length is infinite.

19Crewther (2020) reviews some studies of spontaneous breaking of scale symmetry. Cresswell-Hogg and Litim
(2023) includes a brief annotated list of references. Coradeschi et al (2013) reviews part of the concept.

20|x| ≡
√∑

a,b ηabx
axb, where ηab are the components of the Minkowski metric. After Wick rotation to euclidean

spacetime (section 9), this becomes |x| ≡
√
x · x where x · x is the usual dot product.

21When the O(x) are not really operators (footnote 15), we can use (4) to define scaling dimensions.
22Article 21916
23This is mentioned in the text above equation (21.51) in Fradkin (2021) (and in the online version Fradkin

(2022b)). In models that have conformal symmetry, the result ∆ > 0 can also be derived from that larger symmetry
combined with the positivity of the Hilbert-space inner product (Simmons-Duffin (2016), section 7.3).

24Empty will be defined in section 10.
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7 The irreversible renormalization “group”

If we don’t care about high-resolution observables, then we might as well exclude
them from the model. This is roughly the same25 as imposing a high-energy
cutoff, also called an ultraviolet (UV) cutoff. When we treat spacetime as a
lattice, we’re automatically imposing a UV cutoff Λ0 ∼ 1/ε, where ε is the distance
between neighboring lattice sites.26,27 Making Λ0 larger corresponds to making the
lattice finer. This section defines a modified RG transformation that preserves the
magnitude of the UV cutoff.

Let Ω(R,Λ0) denote the set of observables associated with a region R of space-
time in a model M with a UV cutoff at the scale Λ0. For any λ > 1, we can define
a new model M ′ using this two-step process:28

1. First, discard all observables involving energies > Λ0/λ, which effectively
reduces the value of the cutoff from Λ0 to Λ0/λ.

2. Then, apply equation (1) to move the cutoff back to its original value Λ0.

The first step is defined only for λ > 1. The second step is reversible, but the first
step is not. I’ll call this set of transformations the irreversible renormalization
group.29

25These two concepts are not quite the same, because when spacetime is treated as a lattice, observables may be
defined at individual points even though the lattice provides a high-energy cutoff. Footnote 1 in section 1 ignored
this possibility because it’s artificial.

26This article uses the euclidean version of the path integral (section 9), which replaces Lorentz symmetry in d-
dimensional spacetime with ordinary rotation symmetry in d-dimensional euclidean space. In this context, distance
and duration are synonymous, and so are energy and momentum.

27If the number of lattice sites is finite, then we’re also imposing an infrared (IR) cutoff, which makes the
spectrum of momenta (and energy) discrete instead of continuous.

28If an IR cutoff is also present (footnote 27), then a third step should be added to preserve the value of that
cutoff, too, because otherwise the whole finite-volume spacetime would shrink toward zero size when flowing toward
the IR. In this article, that third step is left implicit.

29This is usually just called the renormalization group, without the adjective irreversible, and it’s usually described
in terms of coefficients in the lagrangian instead of observables (example: Zomolodchikov (1986)).
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8 Another type of irreversibility

The words reversible and irreversible were used in sections 3 and 7 to indicate
whether an individual finite RG transformation can be un-done. The word irre-
versible is also used for a different concept, one that applies to the pattern of RG
flows that go from one fixed point to another (asymptotically).30

Suppose that a flow toward the IR exists that goes from an arbitrarily small
neighborhood of one fixed point M1 to an arbitrarily small neighborhood of another
fixed point M2. We might wonder whether another flow toward the IR could also
exist, one that goes from M2 back to M1. If that’s not possible, then the pattern
of flows toward the IR is called irreversible.31

Among models satisfying a few standard conditions, this type of irreversibility
has been proved for fixed points with conformal symmetry,32 but only for spe-
cial values of d, the number of spacetime dimensions. The result is called the
c-theorem for d = 233 and the a-theorem for d = 4.34 A similar result called the
F-theorem is conjectured for d = 3.35,36 The introduction in Jensen and O’Bannon
(2016) reviews the idea, goals, and status of theorems like these.

The rest of this article uses the word irreversible as it was used in section 7,
not the way it was used in this section.

30This article doesn’t consider flows with limit cycles (Glazek and Wilson (2002)) or chaotic flows (Damgaard and
Thorleifsson (1991)). Curtright et al (2012) comments on the (in)significance of the irreversibility described in this
section for those types of flows.

31This should not be confused with the different type of (ir)reversibility that was described in sections 3 and 7.
32In quantum field theory, models with conformal symmetry are called conformal field theories (CFTs).
33Zomolodchikov (1986)
34Komargodski and Schwimmer (2011), Komargodski (2011)
35The status of this conjecture is reviewed in Nakayama (2015), section 9.2.1.
36Section 1 in Pufu (2016) says, “the RG flow is not reversible: if there exists a relativistic RG flow between CFT1

in the UV and CFT2 in the IR, a relativistic RG flow between CFT2 in the UV and CFT1 in the IR is ruled out [in
d = 3 by the F-theorem].”
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9 The models used in this article

Consider a model involving only a single scalar field37 in d-dimensional spacetime,
which will be treated as a lattice, and let I be some time-ordered product of field
operators and their expectation values.38 This article focuses on models in which
the vacuum expectation value of the operator I can be reconstructed from the
euclidean path integral39

〈I〉 ≡
∫

[dφ] e−S[φ]I[φ]∫
[dφ] e−S[φ]

(5)

using Wick rotation.40 This includes models that are effectively Lorentz symmetric
at resolutions much coarser than the lattice scale. The insertion I[φ] (which repre-
sents the operator I) and the euclidean action S[φ] are both expressed in terms of
the scalar field variables φ(x) and their discretized derivatives with respect to x.

The path integral can also be expressed in terms of the lorentzian action SL[φ],
using factors of eiSL[φ] instead of e−S[φ], but only if the initial and final states are also
included as explicit factors in the integrand. One advantage of using the euclidean
version (5) is that the initial and final states don’t need to be included explicitly:
the path integral (5) automatically selects the vacuum expectation value. For that
reason, this article uses the euclidean version (5), and the euclidean action S[φ]
will just be called the action.

For the examples in this article, the action is proportional to
∑

x L(x), where
the sum is over all points in spacetime, and the lagrangian L(x) is proportional to
(∂φ(x))2 + V (φ(x)) with V (−φ) = V (φ).

37The generalization to multiple scalar fields is straightforward.
38Mnemonic: I stands for insertion or integrand, because of the way this operator is represented in the path

integral (5).
39Article 63548
40If the result of evaluating the path integral is expressed as a function of the time-step dt, then the vacuum

expectation value of I is recovered by replacing every occurrence of dt with i dt (if the fields are all scalar fields).
The name Wick rotation refers to writing this as eiθdt and then “rotating” θ continuously from 0 to π/2.
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10 Continuum limits

Consider a model of the type described in section 9, treating spacetime as a lattice
so that the path integral is well-defined. Adjustable parameters in the action are
called bare parameters. In a model with realistic applications, we would tune
the values of the bare parameters to make the model’s predictions line up with the
available measured data. We are normally only interested in the model’s predictions
at resolutions much coarser than the lattice scale, because the lattice is artificial.
This condition can be expressed as Λ� Λ0, where Λ0 is the UV cutoff and Λ is an
energy scale that characterizes the finest resolution of the measurements of interest.

Taking a continuum limit (a limit in which spacetime becomes continuous)
requires pushing the ratio Λ/Λ0 all the way to zero. We can think of this either
as taking Λ to zero in units of Λ0 or as taking Λ0 to infinity in units of Λ. The
simplest type of continuum limit keeps the values of the bare parameters fixed while
taking Λ to zero in units of Λ0. This is equivalent to flowing toward the IR under
the renormalization group, all the way to the flow’s asymptotic end. The result
depends on the values of the bare parameters:

• The model may become empty, in the sense that the only state(s) whose
energy remains finite in physically meaningful units are the vacuum state(s)
(section 11). Such a model has no useful content, not even as a toy model.41

• The flow may asymptotically approach a scale-invariant model with nonzero
correlations (section 12). The set of models that asymptotically approach a
given fixed point is called the basin of attraction for that fixed point.42

To approach a model with nonzero correlations but without scale symmetry, we
need to vary the bare parameters while taking the limit (section 13). Such a limit
cuts across RG flows instead of following a single RG flow.

41Models with only vacuum state(s) can be instructive toy models when spacetime has a nontrivial topology. That
subject is called topological quantum field theory (TQFT).

42Banks (2008), section 9.4 , pages 152-153
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11 An empty continuum limit

This section describes an example of the first possibility that was listed in section
10. Consider the action

S[φ] =
1

2
εd
∑
x

((
∂φ(x)

)2
+m2φ2(x)

)
+ constant (6)

with m ≥ 0 and a constant term that may depend on the lattice spacing ε but
not on φ. Both terms are positive because this is the euclidean action (section
9). Using this action in the path integral (5) gives the free scalar model.43 The
parameter m turns out to be the mass of a single particle,44 and the correlation
length is proportional to 1/m.

The mass is finite in units of the UV cutoff Λ0 ∼ 1/ε, but in a continuum limit,
the lattice scale Λ0 becomes infinite in units of any physically meaningful scale Λ.
If we take the limit by following the flow of the renormalization group (section (7)),
then m/Λ0 remains fixed. That implies m/Λ→∞, so the correlation length goes
to zero in physically meaningful units, and the energies of all non-vacuum states
become infinite in physically meaningful units,45 so the model becomes empty (as
defined in section 10). That’s not what we want.

43A model is called free if its equations of motion are linear in the fields, which implies that its particles don’t
interact with each other (article 30983).

44Article 30983
45Article 00980 shows that the lowest non-vacuum energy is ∼ m.
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12 A continuum limit with scale symmetry

To prevent the model from becoming empty in the limit defined by the RG flow,
we can set m = 0. If we didn’t make any other changes, then the model would be
undefined, because the path integral includes an integral over every field variable
φ(x), but the action (6) with m = 0 is independent of the combination

∑
x φ(x).

To fix this problem, we can use the action

S[φ] = εd
∑
x

1

2

(
∂φ(x)

)2
+ c

(
εd
∑
x

φ(x)

)2

+ constant (7)

with c > 0. With this action, if the RG flow defined in section 7 is followed to
its asymptotic end, the result is a model with nonzero correlations over arbitrarily
large distances in physically meaningful units. The model is scale invariant except
for the UV cutoff (and the IR cutoff), which can subsequently be removed. This is
the massless free scalar model.46

The (
∑

x φ(x))2 term might seem awkward because it’s not local: it involves
products φ(x)φ(y) with arbitrarily large |x−y|. When d ≥ 4, a less obvious option
is available:47 we can use a local action of the form

S[φ] = εd
∑
x

(
1

2

(
∂φ(x)

)2
+ c2φ

2(x) + c4φ
4(x)

)
+ constant (8)

with c4 > 0 and with c2 tuned to a special negative value (called the critical
point)48 that makes the correlation length infinite in units of ε. The model with
this specially-tuned action flows to the same trivial fixed point in the IR as the
model with action (7), but only if d ≥ 4. If d ≤ 3, then c2 and c4 can be chosen so
that the model flows to a different fixed point (article 79649).

46More precisely, this is a version of the massless free scalar model in which the zero-momentum part of φ(x) is
excluded and the zero-momentum part of φ̇(x) is arbitrary (article 37301, and section 6.3.3 in Di Francesco et al
(1997)).

47Section 15
48Section 23, foreshadowed in footnote 11 in section 4
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13 A continuum limit without scale symmetry

To get a model that has correlations over nonzero distances but doesn’t have scale
symmetry, we need to take a different kind of continuum limit. Instead of following
an RG flow, we need to cut across RG flows – we need to make the bare param-
eters functions of Λ/Λ0 so that they vary while taking Λ/Λ0 → 0. This is called
renormalization.

For a simple example,49 consider the action (6) again, but now keep the value
of m/Λ fixed while taking the limit Λ/Λ0 → 0. The result is the free scalar model
with a single-particle mass m that is nonzero but finite in units of the physically
meaningful scale Λ. In units of the lattice scale Λ0, the correlation length becomes
infinite (m/Λ0 goes to zero), but it remains finite in units of Λ.

49The name renormalization is used mainly when the action involves higher-than-quadratic terms, and usually not
for quadratic cases like this one, even though the basic idea is the same.
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14 Universality

Let S∗[φ] be any action in the basin of attraction of a given fixed point, and let

S[φ] = S∗[φ] + δS[φ] (9)

be another action that differs from S∗[φ] by a small perturbation δS[φ]. If the
new action S[φ] still belongs to the same fixed point’s basin of attraction, then the
perturbation δS[φ] is called irrelevant. An irrelevant perturbation doesn’t change
the ultimate destination of the RG flow.

In contrast, a relevant perturbation pushes the model out of that fixed point’s
basin of attraction.50 In this case, the RG flow eventually carries the model (9)
away from the original fixed point. It might start to approach the original fixed
point initially, but eventually it turns away.51,52 Universality refers to the fact that
for a typical fixed point, the number of linearly independent relevant perturbations
(modulo the irrelevant ones) is relatively small, at any given point on the fixed
point’s basin of attraction.53 This refines the rough definition of universality that
was given in section 1.

Relevant perturbations are the ones whose coefficients need to be tuned as
functions of Λ/Λ0 in order to get a continuum limit without scale symmetry,54 at
least if we want the resulting model to be “close to” the original fixed point. If we
apply a relevant perturbation and then follow the RG flow to its end without that
kind of tuning, then the model might become empty (as in the example in section
11) or it might approach a different fixed point without becoming empty.55

50This assumes that the perturbation is small. Large perturbations may interact with each other in ways that
change the effects that they would have had individually.

51Banks (2008), page 153, text following figure 9.3
52It may ultimately approach a different fixed point instead, so a perturbation that is relevant with respect to one

fixed point may be irrelevant with respect to a different fixed point.
53This last qualification is needed because the set of (ir)relevant perturbations varies throughout the basin of

attraction. The precise correspondence between an operator’s (ir)relevance and its scaling dimension (section 18)
holds only very close to the fixed point itself. Elsewhere in the basin of attraction, that correspondence is modified
(unless the definition of scaling dimension is correspondingly generalized, as some authors do).

54Lüscher and Weisz (1987), below equation (9.1)
55Examples of this are harder to find – not because they don’t exist, but because the math is more difficult.

17



cphysics.org article 10142 2024-12-14

15 Examples

The action (7) is in the basin of attraction of a trivial fixed point. We can use that
action as an example of the S∗ in equation (9). In that case, the perturbation

δS[φ] ∝
∑
x

φ2(x) (10)

is relevant.56 This was explained in sections 11-13.
A more interesting example is a perturbation of the form

δS[φ] ∝
∑
x

(
φ4(x) + γφ2(x)

)
(11)

with constant γ.57 By tuning the parameter γ to a special negative value, we can
make the correlation length infinite, and then this perturbation is irrelevant when
d ≥ 4. The required value of γ depends both on d and on the perturbation’s overall
coefficient.58 Section 16 will describe this in more detail for d = 4.

A perturbation of the same form (11) is relevant when d = 2 or d = 3, even
if the value of γ is tuned to make the correlation length infinite. For that special
value of γ, the perturbed action is in the basin of attraction of a different fixed
point – not the one that was described in section 12. Sections 17 will describe this
in more detail for d = 2, and article 79649 highlights the case d = 3.

Section 19 will relate these examples to scaling dimensions.59

56For the path integral (9) to be well-defined, the coefficient of the perturbation (10) must be positive, and then
the path integral (5) remains well-defined even if the second term is (7) is omitted.

57Here, constant means independent of the spacetime point x and also independent of the field variables φ(x).
58The overall coefficient of the perturbation (11) must be positive, and then the path integral (5) remains well-

defined even if the second term is (7) is omitted.
59Scaling dimensions were defined in section 5.
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16 The irrelevance of (11) when d = 4

Lüscher and Weisz (1987) studied the action60

S = εd
∑
x

(
1

2

(
∂φ(x)

)2
+

g2

2ε2
φ2(x) +

g4

4!ε4−d
φ4(x)

)
(12)

for d = 4. According to their Table 1, for a given value of g4, making the correlation
length infinite requires tuning g2 to the value shown here:61

g4 g2 −g2/g4

0.000 0.000
1.313 −0.100 0.076
2.693 −0.202 0.075
4.136 −0.314 0.076
5.654 −0.422 0.075
7.247 −0.535 0.074
8.901 −0.656 0.074

10.646 −0.775 0.073
12.472 −0.899 0.072
14.380 −1.026 0.071

g4 g2 −g2/g4

16.376 −1.157 0.071
41.970 −2.717 0.065
81.827 −4.839 0.059

144.867 −7.795 0.054
246.674 −12.047 0.049
418.478 −18.422 0.044
728.938 −28.637 0.039

1361.594 −47.055 0.035
3056.380 −91.087 0.030
→∞ → −∞ → 0.025

When the correlation length is infinite, taking the straightforward continuum limit
(with no additional parameter-tuning along the way) gives a scale-invariant model,
and in this case that fixed point must be trivial because nontrivial fixed points
don’t exist for this class of models in d = 4.62

Contrary to what many texts might seem to say, the φ4 term by itself is not an

60This is equation (2.2) in Lüscher and Weisz (1987). Their φ0 is my φ× ε, their g is my g4, and their m2
0 is my g2.

The traditional notation m2
0 can be misleading, because if g4 > 0, then m2

0 must be negative to make the correlation
length much larger than the lattice spacing ε, as shown here in the table.

61This table was derived from their Table 1 by using their equations (2.1)-(2.4).
62Section 22
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irrelevant perturbation.63 The irrelevant perturbation is

φ4 + γφ2 + constant (13)

for a particular negative value of γ. The results tabulated above show that the
required value of γ depends on the value of g4, apparently64 approaching

γ ≈ −0.076× 4!

2ε2
(14)

as g4 → 0.
Analogous results for d = 2 are shown in Schaich and Loinaz (2009), but in

that case the corresponding perturbation (13) is relevant with respect to the fixed
point g4 = g2 = 0, so the straightforward continuum limit leads to a different fixed
point. This will be described in section 17.

63When people say that a φ4 term is irrelevant in d ≥ 4, they’re really referring to what is sometimes called the
“renormalized φ4” term (example: Serone (2018), section 5.9, text between equations (5.9.1)-(5.9.2)), as described
more explicitly in articles 22212 and 23277. The main message in this section is that the “renormalized φ4” term
has the form shown in equation (13), with a negative value of γ.

64The value of γ in the limit g4 → 0 was not given explicitly in Lüscher and Weisz (1987), as far as I noticed. The
estimate (14) is based on a simplistic linear extrapolation of the tabulated results for g4 . 5, motivated by the fact
that the ratio g2/g4 is nearly constant for those entries in the table.
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17 The relevance of (11) when d = 2

In d = 2, the φ4 model is in the same universality class as the Ising model,65

which means that after their parameters are tuned to make the correlation length
infinite, both models flow toward the same scale-invariant model in the IR. This
doesn’t contradict the fact that (11) is a relevant perturbation. The perturbation
is relevant with respect to one scale-invariant model (the one with action (7)), but
flowing toward the IR leads to a different scale-invariant model M . The model M
is nontrivial.66 If it were trivial, then its four-point function could be reduced to a
sum of products of two-point functions,67 but the four-point function for the basic
field σ(x) in the model M is68

〈
σ(x1)σ(x2)σ(x3)σ(x4)

〉2 ∝ f(1, 2 | 3, 4) + f(1, 3 | 2, 4) + f(1, 4 | 2, 3)

with

f(1, 2 | 3, 4) ≡

√
|x1 − x2| |x3 − x4|

|x1 − x3| |x1 − x4| |x2 − x3| |x2 − x4|
.

The model M is “equivalent” to a free Majorana fermion field in a computationally
useful sense,69 but the “equivalence” is nonlocal,70 so this does not contradict the
assertion that M is nontrivial.71

65Section 1 in Serone et al (2018), and and section 1 in Serone et al (2019)
66Section 6.3 in Aizenman (2020) calls it non-gaussian.
67Article 22212
68This this is the case n = 2 of equation (2.23a) in Di Francesco et al (1987), or equation (12.63) in Di Francesco

et al (1997). Here, each xk is a point in 2-dimensional euclidean spacetime: xk = ((xk)1, (xk)2).
69The relationship of M to the free Majorana fermion field is reviewed in Molignini (2013), especially equations

(3.12), (3.14), (3.28), (3.31). It is also reviewed more briefly in in sections 21.6.2 and 21.6.3 of Fradkin (2021) (and
the online version Fradkin (2022b)). The reslationship is explored further in Ardonne and Sierra (2010).

70Di Francesco et al (1987)
71In QFT, a model is defined by the relationship between observables and regions of spacetime. The “equivalence”

between M and the free Majorana fermion field does not respect that relationship: it is a more relaxed kind of
equivalence.
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18 Universality and scaling dimensions

This section presents a general intuitive argument that leads to a simple correspon-
dence between the (ir)relevance of a perturbation and its scaling dimension.72 This
correspondence works well near the fixed point that is used to define the scaling
dimensions, except in cases where the correspondence says that the perturbation
is marginal – the threshold between relevant and irrelevant. In such cases, the
perturbation usually turns out to be either slightly relevant or slightly irrelevant,
and determining which way the balance tips requires a more detailed analysis.73

Section 20 will explain why the intuition described here is not perfect, which helps
explain why the resulting correspondence doesn’t resolve nearly-marginal cases.

Let M∗ be a scale-invariant model (also called a fixed point, as in section 4), let
S∗[φ] be an action in the basin of attraction for M∗, let O(x) be an operator that
has scaling dimension ∆ at that fixed point (section 5), and consider the modified
action

S[φ] = S∗[φ] + εd
∑
x

cO(x), (15)

with coefficient c. Let I(x1, ..., xk) ≡ O1(x1) · · · Ok(xk) be a product of opera-
tors that satisfy (3) in the model with action S∗. In the model with action (15),
expectation values may be written74,75

〈
I(x1, ..., xk)

〉
=

〈
I(x1, ..., xk) exp

(
−
∫
ddx cO(x)

)〉
∗

(16)

where 〈· · ·〉∗ is the expectation value in the model with action S∗. Equation (16)
is the starting point for a computational method called conformal perturbation

72The concept of scaling dimension was introduced in section 5.
73Article 22212
74Section 9
75The unbounded integral

∫
ddx cO(x) can be handled by temporarily replacing the constant c with a function

c(x) of compact support and then taking the limit c(x)→ constant after evaluating the expectation values.
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theory.76

If we could treat O(x) as if it were an isolated insertion and could treat space-
time as an infinite continuum, then the right-hand would be invariant under (3),
so 〈

I(x1, ..., xk)
〉
∝
〈
I(λx1, ..., λxk) exp

(
−
∫
ddx c λ∆O(λx)

)〉
∗
. (17)

By changing the integration variable, this may also be written

〈
I(x1, ..., xk)

〉
∝
〈
I(λx1, ..., λxk) exp

(
−
∫
ddx c λ∆−dO(x)

)〉
∗
. (18)

This shows that in the model with action (15), if we could treat O(x) as if it
were isolated, then a scale transformation x→ λx combined with the replacement
c → c λ∆−d would leave the correlation function invariant up to an overall λ-
dependent factor, and then the effect of a renormalization group transformation (1)
would be equivalent to replacing c → c λd−∆. Flowing toward the IR corresponds
to λ > 1, so we have deduced this correspondence:77

If the magnitude of c is small enough, then the last term in (15)
is a relevant perturbation if ∆ < d and is irrelevant if ∆ > d.
If ∆ = d, then a more detailed analysis is needed, because the
argument outlined above is not perfect (section 20).

Scale-invariant models tend to have only a small number of linearly independent
operators with ∆ < d.78 The correspondence highlighted above then says that the
number of independent relevant perturbations is also small. That’s universality.

76Example: Sen and Tachikawa (2017) uses conformal perturbation theory to study whether perturbations by
marginal operators preserve conformal invariance when d ≥ 3.

77Section 20 will mention why the condition small enough is needed.
78The text below equation (135) in Simmons-Duffin (2016) relates this to the assumption that the operator e−βD

is trace-class, where D is the dilation operator. Page 9 in Hollowood (2009) says “CFTs only have a finite (and
usually small) number of relevant couplings” but doesn’t prove this statement or qualify its scope.
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19 Examples

To illustrate the correspondence highlighted in section 18, here are the examples
from section 15 again,79 this time expressed in terms of operators80 that satisfy the
condition (4):

• For an appropriate function r of the lattice spacing,81 the operator

O(x) ≡ φ2(x)− r

has scaling dimension ∆ = d − 2 after taking the continuum limit to the
trivial fixed point. This is the normal-ordered version of φ2(x).

• For that same function r, the operator

O(x) ≡ φ4(x)− 6rφ2(x) + 3r2 (19)

has scaling dimension ∆ = 2(d − 2) after taking the continuum limit to the
trivial fixed point. This is the normal-ordered version of φ4(x).

79The constant terms included here were omitted in section 15.
80Recall footnote 15 in section 5: When spacetime is treated as a lattice, the examples described in this section are

defined as operators on the Hilbert space, but that is no longer true in in the continuum limit, not even when they
are smeared over a spacetime region of arbitrarily small nonzero size (article 23277). In the continuum limit, they
become a more general type of object for which the vacuum expectation value of the product O(x1)O(x2) · · · O(xn)
is well-defined as long as the points xk are all distinct from each other. These objects still have scaling dimensions,
but their scaling dimensions are defined by equation (4) instead of by equation (3).

81Article 23277
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20 Why the intuition isn’t perfect

Section 18 used a heuristic argument to deduce a correspondence between the
(ir)relevance of a term in the action and the scaling dimension of the corresponding
operator. This section explains why the argument is not perfect.

The argument in section 18 relies on equation (3). That equation assumes that
if x is a point in spacetime, then λx is also a point in spacetime for any λ > 0.
That requires spacetime to have infinite size, but then the integral

∫
ddx O(x) is

not defined. We can fix this by using
∫
ddx f(x)O(x) instead, where f(x) is nonzero

only within some finite but arbitrarily large radius r. This was acknowledged in
footnote 75 in section 18.

Equation (3) also assumes that spacetime is continuous. That’s a problem,
because then O(x) is not an ordinary operator on the Hilbert space: if |0〉 is the
vacuum state, then the norm of O(x)|0〉 is undefined.82 For most of the O(x) that
we might want to consider, smearing doesn’t help: the norm of

∫
ddx f(x)O(x)|0〉

is typically still undefined.83 To make sense out of the right-hand side of (16), some
kind of UV cutoff – like treating spacetime as a lattice – is essential.84

We can still use an approximate version of equation (3). Without the last term
in (15), the model would be scale invariant at sufficiently low resolution except for
artifacts due to the finite value of ε and the finite overall size of the lattice. If those
two scales are separated by a large enough factor, say 1010 000 000, then the deviation
from exact scale invariance would be negligible over a large intermediate range of
scales, which we can take to represent the resolution of our measurements. In that
context, and using the abbreviation∫

ddx · · · ≡ εd
∑
x

· · · ,

82Footnote 15 in section 5, and footnote 80 in section 19
83Article 23277
84Fradkin (2021) acknowledges this in the text below equation (15.118) (and in the online version Fradkin (2022)).

His equation (15.113) corresponds to this article’s equation (16), and his equation (15.114) corresponds to this
article’s equation (18), except that he only writes the partition function instead of a correlation function.
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a group of unitary operators U(λ) should exist for which

U−1(λ)

(∫
ddx f(x)O(x)

)
U(λ) ≈ λ∆

∫
ddx λ−df(x/λ)O(x) (20)

for any a smooth smearing function f(x) that may have compact support but
that is practically constant over distances comparable to ε. Equation (20) is an
approximate version of (3) because if the right-hand side of (20) were defined in
continuous spacetime, then the substitution x = λx′ could be used to write it as

λ∆

∫
ddx′ f(x′)O(λx′). (21)

Unlike (21), though, the right-hand side of (20) makes sense even when x is re-
stricted to points of the lattice, which are the points where the operator O(x) is
defined. The approximate equation (20) can be used in place of equation (3) to get
an approximate version of (18).

The key message here is that argument presented in section 18 can be modified
to account for the UV cutoff, but this can also modify its conclusion about the rate
at which the effect of a given perturbation becomes more or less important as λ
increases. In particular, a perturbation with a marginal scaling dimension ∆ = d
is not necessarily an exactly marginal perturbation. Section 15.6 in Fradkin (2021)
(and the online version Fradkin (2022)) uses the operator product expansion85 to
explain how the UV cutoff gives rise to higher-order corrections that can make
perturbations with ∆ = d either slightly relevant or slightly irrelevant. Article
22212 uses a different approach to reach the same conclusion.

One of the key insights from those analyses is that after accounting for the
UV cutoff, the derivation of the correspondence in section 18 implicitly relies on
a small-coupling approximation. As a result, scaling dimensions don’t perfectly
predict which perturbations are relevant/irrelevant, except close to the fixed point.

85Article 23277
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21 Marginal and marginally (ir)relevant terms

Starting with the action S∗ of a scale-invariant model, a perturbation O is called
(exactly) marginal if taking the straightforward continuum limit of the model
with action (15) would give a scale-invariant model that differs from the original
one.86,87 Marginal is the borderline case between relevant and irrelevant.88

As explained in section 20, the correspondence highlighted in section 18 is only
valid to first order in an expansion in powers of the coefficient c, so a perturbation
with ∆ = d may turn out to be either irrelevant or relevant when analyzed more
carefully. Article 22212 shows that when d = 4, the operator (19) is irrelevant even
though its scaling dimension is ∆ = d. It is often called marginally irrelevant,
because it is so close to the threshold that its (ir)relevance cannot be inferred from
its scaling dimension alone. It is irrelevant, but just barely.

86Perturbations with scaling dimension ∆ = d don’t necessarily satisfy this condition. Many authors use the short
name marginal for any perturbation with ∆ = d and use the longer name exactly marginal for those that satisfy the
stronger condition described here.

87A continuum of scale-invariant models related to each other by such perturbations is called a conformal man-
ifold (Baggio et al (2018)).

88According to section 1.1 in Gerchkovitz et al (2016), “exactly marginal operators are common in supersymmetric
theories in 2 ≤ d ≤ 4” (d is the number of spacetime dimensions). For d ≥ 3, supersymmetric models provide the
only known examples of exactly marginal perturbations (Baggio et al (2018), first paragraph in section 1).
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22 The importance of marginally irrelevant terms

Models with an action of the form (8) are called φ4 models. Within this family
of models, nontrivial strict continuum limits do exist if d ≤ 3,89 but not if d ≥ 4,90

at least not if the φ→ −φ symmetry is not spontaneously broken.91

Marginally irrelevant perturbations are important because even though their
effects would vanish if the RG flow were followed to its end (toward the IR), they
might vanish only very slowly compared to the rate at which Λ/Λ0 goes to zero.
For that reason, marginally irrelevant perturbations can have significant effects at
resolutions much coarser than the lattice scale even if a nontrivial strict continuum
limit doesn’t exist. Quantum electrodynamics (QED) is probably one of those
models: it apparently does not have a nontrivial strict continuum limit, but a
significant interaction is still present over a large range of energies (resolutions) for
which the deviation from continuous spacetime is negligible. This range of energies
is enough to cover all of the model’s intended applications.92

89The case d = 3 is addressed in literature about the Wilson-Fisher fixed point, like section 5.3.4 in Skinner
(2016) and the text below equation (15.75) in Fradkin (2021) (also the online version Fradkin (2022)). The case
d = 2 is addressed in the vast literature about two-dimensional conformal field theory.

90For d ≥ 5, this is proved in Aizenman (1981) and Aizenman (1982). Section 6.4 in Duminil-Copin (2022) reviews
the idea of the proof. Aizenman (2020) reviews the idea in more detail. The proof is extended to d = 4 in Jora
(2016) and Aizenman and Duminil-Copin (2019), and section 1 in Podolsky (2010) reviews some history.

91This condition is mentioned in the text below equation (13.3) in Aizenman (1982).
92According to section 2.2 in McGreevy (2019), “Landau and many other smart people gave up on QFT as a

whole because of this silly fantasy about QED in an unphysical regime.” Based on its context, I interpret this quote
to mean that those people initially hoped that QED would have a nontrivial strict continuum limit and that they
gave up on QFT when they realized that it doesn’t, even though QED still has a perfectly good non-perturbative
construction – treating spacetime as a lattice – with a large range of applications in which artifacts of the lattice are
utterly negligible.
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23 The critical manifold

If a fixed point is not the empty model, then its basin of attraction is also called its
critical manifold.93 The name basin of attraction alludes to the fact the RG flow
carries these models to the given fixed point. The name critical manifold alludes
to the fact that each of these models has infinite correlation length,94 as it must
in order for the RG flow to approach a non-empty model asymptotically.95,96 This
is consistent with the way the adjective critical is used in statistical physics: a
point in parameter-space at which a correlation length diverges is called a critical
point. A famous example is the phase diagram of a fluid like water or carbon
dioxide, which has an isolated critical point in the pressure-temperature plane.97

Right at the critical point, the fluid becomes semi-opaque, a phenomenon called
critical opalescence.

Points on the critical manifold are often called critical points, including the
fixed point itself (if it’s not an empty model). A fixed point that admits more
than one linearly independent relevant perturbation (modulo the irrelevant ones)
is called a multicritical fixed point.98,99 In other words, a multicritical fixed point
is one for which more than one parameter must be tuned as a function of Λ/Λ0 in
order to approach the fixed point as Λ/Λ0 → 0.

93Banks (2008), section 9.4 , pages 152-153 (also Wu and Car (2019))
94Wilson and Kogut (1974), page 161, text above figure 12.1
95Here, I’m using the name correlation length to mean any length scale, other than the lattice spacing ε, that

characterizes form of a two-point correlation function as a function of the distance between the two points, as the
distance goes to infinity. Section 6 described one example.

96I’m only considering continuum limits for which the resulting model has rotational symmetry in d-dimensional
euclidean spacetime. This rotation symmetry is related to Lorentz symmetry by Wick rotation (section 9).

97Article 73054
98Page 75 in McGreevy (2021), and page 32 in section V.A in the preprint version of Poland et al (2019)
99This name might be a little confusing, because relevant perturbations are the ones that push the model away from

that fixed point’s critical manifold, at least when critical manifold is defined as above. Maybe the name multicritical
fixed point comes from thinking about RG flows toward the UV instead of toward the IR.
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