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Tensor Fields on Smooth Manifolds
Randy S

Abstract Physics is usually expressed with the help of a coordi-
nate system, but a coordinate system is just a way of labeling the
points of spacetime (or space), and nature should not care how we
label things. This article introduces the concept of a tensor field.
Explicit equations involving tensor fields are often written in terms
of coordinates, which tends to obscure the fact that a tensor field is
— by definition — independent of coordinates. This article defines
tensor fields without using coordinates.
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1 Vocabulary and notation

The word field has two mostly-unrelated meanings:1

• It can refer to an algebraic structure like the field of real numbers or the field
of complex numbers. More precisely: a commutative ring is called a field if
it has an identity element for multiplication and if every nonzero element has
an inverse.2

• It can refer to a tensor field, which is the subject of this article.

The intended meaning should usually be clear from the context.
Within a given chart (article 93875), the points of an N -dimensional smooth

manifold M may be labelled by N -tuples of real numbers. A particular N -tuple,
the coordinate representation of a particular point, will be denoted

x = (x1, x2, ..., xN).

The superscripts here are indices, not exponents. The abbreviation

∂a ≡
∂

∂xa

will be used for partial derivatives. Whenever the same index appears as both a
superscript and a subscript within the same term, a sum over the index is implied.
For example,

AaBab is an abbreviation for
∑
a

AaBab.

1The next section uses the word both ways.
2Pinter (1990), chapter 17, page 172
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2 Smooth manifolds: where tensor fields live

Functions can be defined on any set Ω. Let R be the field of real numbers. A
function f : Ω→ R assigns one real number to each element of the set:3

p 7→ f(p) with p ∈ Ω and f(p) ∈ R.

To define continuity or derivatives of functions, the set must be endowed with some
extra structure (article 93875):

• A set equipped with enough structure for defining continuity is called a topo-
logical manifold.

• A set equipped with enough structure for defining derivatives is called a
smooth manifold.4

Tensor fields can be defined on any smooth manifold. The simplest example of a
smooth manifold is RN , and this is the prototype from which all N -dimensional
smooth manifolds are constructed patchwise. The general concept of a smooth
manifold is reviewed in article 93875, but this article will lean on the reader’s
established intuition about the simplest example RN . Each N -tuple of real numbers
represents a point in RN , and a function

f : RN → R (x1, ..., xN) 7→ f(x1, ..., xN)

is called smooth if its derivatives with respect to the variables xa are well-defined.
The thing we normally call 3d space (or 4d spacetime) is a smooth manifold

together with a special tensor field called a metric field (section 16). Geometry
is defined using the metric field (articles 21808 and 48968). On a smooth manifold
by itself, without a metric field, geometric concepts like distance and angle are
undefined. The definitions of tensor fields do not rely on such concepts.5

3An element of a smooth manifold is often called a point.
4This article requires that derivatives of arbitrarily high order be defined. Alternate definitions may require only

that derivatives up to some finite order be defined.
5Tensors and tensor fields on other kinds of spaces can also be defined. This article is specifically about tensor

fields on smooth manifolds, as appropriate for applications to general relativity.
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3 Scalar fields: definition

The simplest type of tensor field is a scalar field. Given a smooth manifoldM, a
scalar field S on M is a smooth function from M to R:

S :M→ R.

In other words, a scalar field assigns a single real number S(p) to each point p ∈M,
varying smoothly from one point to the next.

If S and S ′ are two scalar fields, then their sum S + S ′ and product SS ′ are
also scalar fields, defined by

(S + S ′)(p) ≡ S(p) + S ′(p). (SS ′)(p) ≡ S(p)S ′(p).

If S is a scalar field and r is a real number, then rS is another scalar field:6

(rS)(p) ≡ rS(p).

These operations define the algebra of scalar fields, which will be used in section
5 to define the concept of a vector field.

A scalar field is a coordinate-independent entity, even on the manifold RN . Any
given patch of the same manifold may be covered by RN in many different ways
(corresponding to many different coordinate systems), and all of them are equally
legitimate descriptions of the manifold. A scalar field assigns a real number to each
point of the manifold, regardless of how that part of the manifold is covered by RN .

6The right-hand side is the ordinary product of the real numbers r and S(p).
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4 Scalar fields: coordinate representation

Suppose that M is an N -dimensional smooth manifold. Within a given chart
where each point p is represented by its coordinates (x1, ..., xN), a scalar field is
a smooth function S(x1, ..., xN) of the N coordinates. However, a scalar field is
a coordinate-independent entity: the real number that it assigns to a given point
p ∈M does not depend on which coordinate system we use to specify the point p.

To explain this in more detail, consider a chart (U, σ), where U is an open
subset U ⊂ M and σ : U → RN is a homeomorphism. The chart (U, σ) defines a
coordinate system for that part ofM. Given a scalar field S :M→ R whose value
at p ∈M is S(p), its coordinate representation is the function S(x) defined by7

S(x)
∣∣∣
x=σ(p)

≡ S(p).

If we change the coordinate system by replacing σ with σ̃, then the same scalar
field has the new coordinate representation

S̃(x)
∣∣∣
x=σ̃(p)

≡ S(p).

The relationship between the two representations is

S̃(x)
∣∣∣
x=σ̃(p)

= S(x)
∣∣∣
x=σ(p)

, (1)

which can also be written
S̃(x̃) ≡ S

(
x(x̃)

)
,

where the N -tuple of smooth functions x(x̃) converts the coordinates x̃ of p in one
system to the coordinates x of the same point p in the other system. These two
functions (the left- and right-hand sides of (1)) are two different representations
the same scalar field: they both assign the same real number to any given point of
M.

7To help keep the notation light, I’m using the same symbol S for two different functions: one whose input is a
point p ∈M, and one whose input is an N -tuple of real numbers x ∈ RN .
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5 Vector fields: definition

A vector field is another type of tensor field. Let S denote the set of scalar fields
on M. A vector field V is a map from S to itself,

V : S → S, (2)

that satisfies these conditions:

V (S + S ′) = V (S) + V (S ′) V (rS) = r V (S) (3)

and
V (SS ′) = S V (S ′) + S ′ V (S) (4)

for all scalar fields S, S ′ ∈ S and all real numbers r. A map satisfying the first two
conditionsn (3) is called linear. A map satisfying the last condition (4) is called a
derivation. The conditions (3) and (4) are well-defined because the set of scalar
fields is an algebra. Altogether, a vector field V is a linear derivation on the algebra
of scalar fields.8

If V and V ′ are two vector fields, and if r is a real number, then V + V ′ and
rV are also vector fields. They are defined by

(V + V ′)(S) ≡ V (S) + V ′(S) (rV )(S) ≡ r V (S).

With these definitions, the set of vector fields becomes a vector space.
The definition of a vector field (or any other type of tensor field) relies only on

the smooth structure, not on geometric concepts like distances or angles. Geometric
notions, like the norm of a vector or the angle between two vectors, are not defined
on a smooth manifold. To define such concepts, we would need to specify a metric
field.

8A more traditional coordinate-free definition of vector fields starts by defining the “tangent space” at each point
of the manifold, uses that to define a vector at a point, and then defines a vector field to be a smooth choice of one
vector per point. The approach used here is simpler, and it is equivalent (Lee (2013), chapter 3 and proposition 8.15
on page 181; also Isham (1999), section 2.3.5).
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6 Vector fields: coordinate representation

A vector field has a direction9 at each point of the manifold M where it is not
zero. To see how definition shown above encodes directional information, choose a
coordinate system and consider the vector field V defined by

(V S)(x) ≡ V a(x)
∂

∂xa
S(x)

for all scalar fields S. The coefficients V a(x) are smooth functions of x. More
concisely:

V ≡ V a(x)
∂

∂xa
(5)

The N coefficients V a(x) are the components of the vector field in this coordinate
system. The field V defined by (5) clearly satisfies the conditions (3) and (4). Every
vector field can be expressed this way, as a derivative acting on scalar fields.10

At each point x for which the coefficients V a(x) are not all zero, the differential
operator (5) defines a direction. To see how, consider a smooth curve on the
manifold, described by an N -tuple of functions x(λ), specifying the coordinates of
a point for each value of λ. Any scalar field S(x) defines a function S(x(λ)) along
the curve. The derivative of this function with respect to λ is

d

dλ
S
(
x(λ)

)
=

[
d

dλ
xa(λ)

]
∂

∂xa
S(x)

∣∣∣∣
x=x(λ)

.

At any given point along the curve, the relative magnitudes of the coefficients in
square brackets encode the direction in which the curve passes through that point.
Similarly, for any vector field, at any point where the coefficients V a(x) are not all
zero, their relative magnitudes encode the direction along which the derivative is
being taken. In this way, a vector field encodes a direction at each point where it
is nonzero.

9To define the magnitude of a vector field requires additional structure beyond what a smooth manifold provides,
such as a metric structure (defined by a metric field).

10Equation (8.2) in Lee (2013), and section 15.1 in Berger (2003)
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7 Vector fields: coordinate transformation

A vector field is a coordinate-independent entity. It is not just a collection of
components. In practice, however, calculations with vector fields are typically
done using their components in a given coordinate representation.

When changing coordinate systems, the components of a vector field don’t trans-
form like scalar fields. To see how they do transform, suppose that the same point
p is represented by one N -tuple x = (x1, ..., xN) in one coordinate system and by
another N -tuple x̃ = (x̃1, ..., x̃N) in another coordinate system. Let V a(x) and
Ṽ a(x̃) be the components of the same vector field in the two coordinate systems.
The vector field itself, the left-hand side of equation (5), does not depend on which
coordinate system we use. Therefore, equation (5) implies

Ṽ a(x̃)∂̃a = V a
(
x(x̃)

)
∂a (6)

∂̃a ≡
∂

∂x̃a
∂a ≡

∂

∂xa
.

The left- and right-hand sides of equation (6) are the same vector field, represented
in different coordinate systems.11 Use the identity12

∂a = (∂ax̃
b)∂̃b, (7)

to see that the condition (6) implies

Ṽ a(x̃) = V b
(
x(x̃)

)
(∂bx̃

a). (8)

This says that a coordinate transformation mixes the components of a vector field
with each other in a particular way. Again: the components of a vector field are
not scalar fields. A vector field is a linear derivation, and this is what defines its
direction at each point of the manifold.

11Recall the definition of a partial derivative: Each of the partial derivatives ∂a in the first coordinate system
are defined with the other coordinates in that system held fixed. Similarly, each of the partial derivatives ∂̃a in the
second coordinate system are defined with the other coordinates in that system held fixed.

12This identity should be familiar. It makes sense because coordinate transformations are invertible, so x̃ may be
regarded as a function of x.
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8 One-forms

This section introduces another type of tensor field, called a differential one-
form, or just a one-form.13 A one-form is a linear map from the set of vector
fields to the set of scalar fields. In other words, a one-form ω takes a vector field
V as input and returns a scalar field ω(V ) as output, subject to this condition:14

ω(rV + r′V ′) = rω(V ) + r′ω(V ′)

for all real numbers r, r′ and all vector fields V, V ′.
If ω and ω′ are two one-forms, and if r is a real number, then ω+ω′ and rω are

also one-forms. They are defined by

(ω + ω′)(V ) ≡ ω(V ) + ω′(V ) (rω)(V ) ≡ r ω(V ).

With these definitions, the set of one-forms becomes a vector space.
Given a one-form ω and a vector V , the coordinate representation of the scalar

field S ≡ ω(V ) is
S(x) = ωa(x)V a(x) (9)

where V a are the components of V . The functions ωa(x) are the components of
the one-form. We already know how vector fields transform (equation (8)), so we
can infer from equation (9) how the components of a one-form transform:

ω̃a(x̃) = ωb
(
x(x̃)

)
(∂̃ax

b). (10)

To deduce this, use the chain rule:

(∂̃ax
b)(∂bx̃

c) = ∂̃ax̃
c = δca.

13In section 15, after differential forms of higher degree are defined, I’ll switch to writing 1-form instead of one-form.
14This is what linear means.
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9 A symmetry between vector fields and one-forms

We used scalar fields to define vector fields, and then we used those to define one-
forms. Now that these are all defined, we have another way of thinking about
vector fields. A vector field V can be regarded as a linear map from one-forms to
scalar fields, namely the map defined by

V (ω) ≡ ω(V ). (11)

On the right-hand side, the vector field V is defined as before. On the left-hand
side, V denotes the map defined by this new equation. This is another way of
thinking about the same vector field. The symmetry of equation (11) is consistent
with the symmetry of the coordinate representation (9).

11
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10 Differentials

Section 6 explained how the coordinate representation of a vector field is naturally
expressed as a differential operator. That’s better than representing the vector
field as just a list of components, because keeping those components packaged as
a differential operator reminds us how they must transform when the coordinate
system is changed. A similar way of packaging the components of a one-form exists,
using the coordinate differentials dxa. These are one-forms defined by

dxa(∂b) = δab . (12)

They are defined on arbitrary vectors fields by linearity:

dxa(V ) = V b dxa(∂b) = V a.

Now the coordinate representation of a one-form ω may be written as

ωa(x) dxa. (13)

Equation (12) dictates how dxa transforms under a coordinate transformation, and
then the expression (13) – together with the fact that ω is coordinate-independent
– dictates that the components ωa transform as shown in section 8.

Given any scalar field S, the differential of S is the one-form dS defined by

dS(V ) ≡ V (S)

for all vector fields V . The coordinate representation of dS is

dS(x) = dxa ∂aS(x).

This looks like the usual expression for an infinitesimal variation of S, and that’s
not a coincidence. According to page 283 in chapter 11 of Lee (2013): “The great
power of the concept of the differential comes from the fact that we can define
df invariantly on any manifold, without resorting to vague arguments involving
infinitesimals.”

12
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11 General tensor fields on smooth manifolds

The preceding sections introduced three different types of tensor field, each with its
own special name. To describe general tensor fields, we can use a more systematic
naming convention:

• Scalar fields are tensor fields of type
(

0
0

)
.

• Vector fields are tensor fields of type
(

1
0

)
.

• One-forms are tensor fields of type
(

0
1

)
.

After defining the special cases
(

0
0

)
and

(
1
0

)
as before, we can define tensor field

of any other type
(
k
m

)
for all non-negative integers k,m. A tensor field of type(

k
m

)
is a map that takes k one-forms and m vector fields as input, returns a single

scalar field as output, and is linear in each of its inputs. The notation
(
k
m

)
indicates

the numbers of superscripts and subscripts in a coordinate representation of the
tensor.15

15Lee (1997) uses the opposite convention: Lee’s
(
m
k

)
is the same as my

(
k
m

)
. The notation (k,m) is also used for

a tensor field whose inputs are k one-forms and m vector fields.

13
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12 Examples

A tensor field T of type
(

0
2

)
takes any two vector fields V, U as input as input,

returns a single scalar field T (V, U) as output, and is linear in both of its inputs.
The coordinate representation of the scalar field T (V, U) is

Tab(x)V a(x)U b(x), (14)

where Tab(x) are the components of T . The coordinate representation of T has
two subscripts, as indicated by the notation

(
0
2

)
. The coordinate representation of

T itself is16

Tab(x)dxa ⊗ dxb, (15)

where the dx’s are the basis one-forms that were defined in section 8. The tensor
product symbol ⊗ acts as a separator between two positions into which separate
scalar fields may be inserted. This notation reflects the fact that the two differen-
tials dxa and dxb are meant to accept two separate inputs (two vector fields).

A tensor field T of type
(

2
0

)
takes any two one-forms ω, ω′ as input as input,

returns a single scalar field T (ω, ω′) as output, and is linear in both of its inputs.
The coordinate representation of the scalar field T (ω, ω′) is

T ab(x)ωa(x)ω′b(x),

with components T ab(x).
A tensor field T of type

(
1
2

)
takes one one-form ω and two vector fields V, U

as input and returns a single scalar field T (ω, V, U) as output. The coordinate
representation of the scalar field T (ω, V, U) is

T abc(x)ωa(x)V b(x)U c(x),

with components T abc(x).

16In (15), the dxas are one-forms, not components of one-forms. In (14), V a and U b are components of vector
fields, not vector fields.

14
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13 A special tensor field of type
(

1
1

)
One especially important tensor field of type

(
1
1

)
was used in section 10, namely

the one that takes a 1-form ω and a vector field V as input and returns the scalar
field ω(V ) as output. The components of this special

(
1
1

)
tensor field are denoted

δba and are numerically given in any coordinate system by

δba =

{
1 if a = b

0 otherwise

so that the coordinate representation of ω(V ) is

ωbV
a δba = ωaV

a.

Unlike most tensor fields, this one has the same components in any coordinate
system, thanks to the identity

(∂̃dx
b)(∂ax̃

c)δdc = ∂ax
b = δba.
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14 Tensor fields with special symmetries

A tensor field of type
(
k
0

)
or
(

0
m

)
is called symmetric if it is invariant under

arbitrary permutations of its inputs. Similarly, a tensor field of type
(
k
0

)
or
(

0
m

)
is

called antisymmetric if it changes sign (but not magnitude) whenever two of its
inputs are exchanged.

Examples: If T is a symmetric tensor field of type
(

0
2

)
, then

T (V, V ′) = T (V ′, V ).

If T is an antisymmetric tensor field of type
(

0
2

)
, then

T (V, V ′) = −T (V ′, V ).

16
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15 Differential forms

An antisymmetric tensor field of type
(

0
m

)
is also called an m-form. In the special

case m = 1, the antisymmetry condition is trivially satisfied (because it has only
one input, so there is nothing to exchange), so every tensor field of type

(
0
1

)
can

also be called a 1-form, as in section 8.
An anti-symmetric tensor field of type

(
0
2

)
is called a 2-form. The electromag-

netic field is an important example of a 2-form.
More generally, a completely anti-symmetric tensor field of type

(
0
m

)
is called

an m-form. Completely anti-symmetric means that the sign of

T (V, V ′, V ′′, ...)

changes whenever two of its arguments are exchanged with each other. This in-
cludes 1-forms as a special case, because with only one argument, the anti-symmetry
condition is trivially satisfied. m-forms are collectively called differential forms.

I won’t try to give a proper introduction to differential forms here,17 but I’ll
mention a few things to motivate further study. Differential forms are special
because

• 1-forms can be integrated over curves,

• 2-forms can be integrated over surfaces,

• 3-forms can be integrated over volumes,

and so on. These integrals are coordinate-independent and independent of how the
submanifold (curve, surface, and so on) is parameterized. The exterior derivative
of an m-form ω is a (m + 1)-form dω (this generalizes the differential of a scalar
field), and Stokes’s theorem relates the integral of dω over a manifold M to
the integral of ω over the manifold’s boundary ∂M. The exterior product (or
wedge product) of an m-form and an m′-form is an (m + m′)-form. This is all
part of a subject called exterior calculus.

17Chapter 16 in Lee (2013) gives a proper introduction.

17
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16 Metric fields

A metric field g is a symmetric tensor field of type
(

0
2

)
that is also non-degenerate:

for every point p in the manifold, if g(V, U) is zero at p for all vector fields V , then
the vector field U is zero at p.

Given a metric field g and two vector fields V, U , the coordinate representation
of the scalar field g(V, U) is

gab(x)V a(x)U b(x)

where V a and Ua are the compoennts of V and U . The functions gab(x) are the
components of the metric field. The coordinate representation of the metric field
itself is

gab(x)dxa ⊗ dxb, (16)

as in section 12.

18
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17 The signature of a metric field

Let g be a metric field defined on an N -dimensional manifold. At any given point
x, the components gab(x) of the metric field may be regarded as the components
of an N ×N matrix. The requirement that a metric field be symmetric and non-
degenerate implies that this matrix has N non-zero eigenvalues. Let p be the
number of positive eigenvalues, and let n be the number of negative eigenvalues.
The pair (p, n) is called the signature of the given metric field.

The signature is the same at all points of the manifold, and it is independent
of the coordinate system. It is the same at all points of the manifold because the
number of positive (or negative) eigenvalues cannot depend on x. If it did, then
at least one eigenvalue would be zero for some value of x, but this cannot happen
because the definition requires that the matrix of components always has N non-
zero eigenvalues. The signature also cannot depend on which coordinate system
we use, for the same reason that a similarity transformation of a matrix cannot
change its eigenvalues.

Two important special cases have special names:

• The signature is called euclidean if all eigenvalues have the same sign. The
geometry of 3d space (flat or curved) is defined using a metric field with
euclidean signature (article 21808).

• The signature is called lorentzian if exactly one eigenvalue has opposite sign
compared to the others. The geometry of spacetime (flat or curved) is defined
using a metric field with lorentzian signature (article 48968).

19
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18 Using a metric field to define duals

Given a vector field V and a 1-form ω, we can construct a scalar field ω(V ), whose
representation in a coordinate system x is

ωa(x)V a(x).

For the rest of this section, the argument x will be omitted. Then the preceding
equation is abbreviated

ωaV
a.

In contrast, we cannot construct a scalar field using only a vector field V or using
only a 1-form ω. When a metric field is available, we have more options. Given a
metric field g and a vector field V , we can construct a scalar field as g(V, V ).

A metric field may be used to establish a correspondence between vector fields
and 1-forms. Given a metric field g and a vector field V , feeding V into one of g’s
two inputs, leaving the other input free, gives a 1-form V called the dual of V . In
coordinate-free terms, V is defined by the condition18

V (U) = g(V, U) for all vector fields U. (17)

If V a denotes the components of V = V a∂a in some coordinate system, then the
components of V are denoted Va and are related to V a by

Va(x) = gab(x)V b(x).

More concisely,
Va = gabV

b. (18)

The dual (or inverse) of the metric field itself may also be defined. It is a
tensor field g of type

(
2
0

)
defined by the condition

g(V , ω) = V (ω) holds for all 1-forms ω. (19)

18The nongeneracy of the metric ensures that distinct vector fields have distinct duals.

20
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Like g, the tensor g is symmetric. To prove this, use (19), then (11), then (19)
again to get this sequence of equations:

g(V , U) = V (U) = U(V ) = g(U, V ).

The symmetry of the right-hand side implies the symmetry of the left-hand side.
The components of g are denoted gab. We can use the coordinate-free defi-

nition (19), to determine the relationship between the components of g and the
components of g. Start with

g(V , ω) = gabVaωb = gabgacV
cωb,

where equation (18) was used in the last step, and gab denotes the not-yet-determined
components of g. To determine them, use the definition (19) to get

gabgacV
cωb = V bωb.

This must hold for all vector fields V and all 1-forms ω, so it implies

gab(x)gac(x) = δac .

Together with the symmetry gab = gba that was derived in the preceding paragraph,
this explains why g is called the inverse metric field: its components are those of
the inverse of the matrix with components gab.

Now that the dual of the metric is defined, the dual of a 1-form may be defined
by analogy with (17):

ω(ν) = g(ω, ν) for all 1-forms ν. (20)

The name dual is justified by these relationships:

V = V ω = ω.

21
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The proof of the first relationship simply uses the preceding definitions in succession
(and the proof of the second relationship is similar):

V (ω) ≡ g(V , ω) ≡ V (ω)

for all 1-forms ω. The relationships

ω(V ) = ω(V ) ω(V ) = ω(V )

also hold. The proofs are straightforward applications of the definitions, with some
help from (11) and symmetry.

In coordinates: given a 1-form ω with components ωa, we can feed ω into one
of the two inputs of the inverse metric tensor g−1 to get a vector field called the
dual of ω. The components ωa of the dual are

ωa = gabωb,

which is the counterpart of equation (18).
In physics, we usually work with the components of tensor fields in a given

coordinate system instead of working directly with their coordinate-free definitions,
but knowing that tensor fields have coordinate-free definitions is still important.
General relativity makes more sense with this perspective.
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