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Topological Operators
and Higher-Form Symmetries

Randy S

Abstract This article introduces topological operators and the higher-form
symmetries they generate. In d-dimensional spacetime, a topological operator
nominally localized on a submanifold with q dimensions defines a symmetry that
can affect some operators that are nominally localized on submanifolds with p
dimensions, provided p + q ≥ d − 1 so that the submanifolds can be linked with
each other in the knot-theoretic sense. This is called a p-form symmetry. This
article explains the relationship between how these symmetries are described in
the canonical and path integral formulations. Examples with p = 0 (zero-form
symmetry) and with p = 1 (one-form symmetry) are given, including a one-
form symmetry called center symmetry.
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1 Introduction and outline

The concept of a higher-form symmetry is a natural generalization of the traditional
concept of symmetry in quantum field theory.1 The concept is most natural in the
path integral formulation, where operators are represented as modifications of the
integrand of the path integral. In that representation, an operator is more than just
a linear transformation of the Hilbert space,2 and the extra information is important
for the full definition of higher-form symmetries. This article uses both the path
integral and canonical (operators-on-a-Hilbert-space) formulations and explains the
relationship between their respective descriptions of higher-form symmetries.

This article has three parts:

• Sections 4-18 introduce the general concepts.

• Sections 19-30 explore an easy example of a zero-form symmetry.3

• Sections 31-34 review examples of one-form symmetries involving Wilson
operators and ’t Hooft operators.4 Those sections cite other articles for
more detail.

An appendix (section 35) addresses a technical issue about how certain operators
are represented the path integral formulation.5

1Etxebarria (2022) lists this among a collection of fruitful extensions of the traditional concept of symmetry.
2Article 02242
3These sections assume familiarity with the material about quantum scalar fields in articles 37301, 52890, and

63548.
4Article 22721 gives an overview of these operators.
5The issue is demonstrated using a scalar field in one-dimensional spacetime, but it is present for spacetimes with

any number of dimensions and also applies to the representation of topological ’t Hooft operators in the Villain model
of compact electrodynamics (not reviewed here).
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2 Notation and conventions

The d-dimensional spacetime manifold Mst is globally hyperbolic, so it is home-
omorphic to R×Ms. The first factor is time. The second factor Ms is the (d− 1)-
dimensional spatial manifold. For simplicity, this article assumes that Ms is
closed, like a torus. A point in spacetime will be denoted either x or (x, t), using
boldface for the spatial part and t for time, and coordinates are denoted xk:

x = (x0, x1, ...xd−1) x = (x1, ..., xd−1) t ≡ x0.

The partial derivative with respect to the kth spacetime coordinate is abbreviated

∂k ≡
∂

∂xk
.

More vocabulary:

• A closed manifold is a compact manifold without a boundary.

• The unqualified name submanifold will mean properly embedded sub-
manifold.6 Roughly, a submanifold is properly embedded if it does not inter-
sect itself and is not missing any part of its boundary.

Given an oriented7 manifold X, its orientation-reversed counterpart will be denoted
X−1.

6Article 44113, version 2025-11-01 or later
7Article 91116 defines orientation.
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3 Two meanings of closed

In the context of topology, the word closed is used with two different meanings:

• A topological structure for X is defined by designating some subsets of X to
serve as the open subsets of X. The complement of an open set is a closed
subset of X.

• A compact manifold whose boundary is empty is called a closed manifold.

This article uses the word closed both ways. It is used with the first meaning
only when it modifies the noun subset. Otherwise, the second meaning should
understood.
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4 Operators

In its most basic form, a path integral gives the result of evolution of a given
initial state through a given time interval in the Schrödinger picture. An operator
is described by modifying the integrand of the path integral. A modification of
the integrand of the path integral is more than just an operator acting on states
in the Hilbert space, though. This becomes clear when two such modifications
are both included together in the path integral. Article 02242 explains this in
generic terms, and it is important in the study of higher-form symmetries. In this
article, A denotes the algebra of operators when they are regarded as nothing more
than operators on the Hilbert space, and M denotes the set of modifications of
the integrand that represent operators in A. Elements of M will still be called
operators, even though the map M → A is forgetful: an element of M is more
than just an element of A.

As in article 02242, the elements of M that are described by modifications of
the integrand involving only integration variables in the region R will be denoted
M(R) and will be called localized in R. The result of applying the forgetful map
M→A to M(R) will be denoted A(R).

Two operators A and B that differ as elements ofM may be equal as elements
of A, so relationships like A = B or A 6= B require clarification. This article writes

A
M
=B A

M
6=B

to indicate that A and B are equal/unequal to each other as elements of M, and

A
A
=B A

A
6=B

to indicate that they are equal/unequal to each other as elements of A. Then

A
M
=B implies A

A
=B,

but
A
A
=B does not imply A

M
=B.
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5 Composition of operators

The way two operators A and B are composed depends on whether they are re-
garded as elements of A or as elements of M:

• If two operators A and B are regarded as elements of A, then they can be
composed by applying them successively, denoted AB or BA depending on
the order in which they are applied. This is the usual algebraic product.

• If two operators A and B are regarded as elements of M, then they can
be composed by including both modifications in the integrand of the path
integral. The result of this composition will be denoted τ (A,B).

If the regions in which A and B are localized do not both intersect each others’
causal pasts, then τ (A,B) reduces to the usual time-ordered product, which is
proportional to one of the algebraic products AB or BA when regarded as an
element of A.8

8Article 02242
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6 Operators on lower-dimensional submanifolds

In smooth spacetime, observables are typically not strictly localized on lower-
dimensional submanifolds,9 but having a concise language for operators that are
close to being localized on lower-dimensional submanifolds will be convenient. Let
X be a lower-dimensional submanifold X of spacetime, and suppose O is localized
in some narrow tubular neighborhood10 Xnbhd of X. The operator O will be called
localized on X, and the pair (X,O) will be abbreviated O(X). The abbreviations
M(X) ≡M(Xnbhd) and A(X) ≡ A(Xnbhd) will also be used, so:

• O(X) is an element of M(X) when it is regarded as a modification of the
integrand of the path integral,

• O(X) is an element of A(X) when it is regarded as nothing more than a
linear operator on the Hilbert space.

If the intersection X1 ∩ X2 is empty, then the composition τ
(
O1(X1),O2(X2)

)
is

defined and is localized on the union X1 ∪X2:
11,12

τ
(
O1(X1),O2(X2)

)
∈M(X1 ∪X2).

This generalizes in the obvious way to the composition of any number of operators
whose localizations regions don’t intersect each other.

9Article 10690
10Article 53600 defines tubular neighborhood. Using such a neighborhood is a concession for the fact that

observables typically cannot be strictly localized on lower-dimensional manifolds in continuous spacetime. Narrow
won’t be quantified, but it is meant to be small (in the directions transverse to X) compared the separations between
where the operators in any composition of interest are localized.

11Article 02242
12If X1 ∩ X2 is not empty, then τ

(
O1(X1),O2(X2)

)
might be undefined, because O1(X1) and O2(X2) might

prescribe mutually inconsistent modifications of the integrand of the path integral.
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7 The concept of a continuous deformation

Let X be a submanifold of higher-dimensional manifold M . A continuous defor-
mation of X is a continuous series of infinitesimal changes that all preserve the
topology and proper-submanifoldness of X.13 Such a series may be viewed as the
image of a homotopy (article 61813) that is a homeomorphism for each value of
the deformation parameter.

These pictures show four different 1-dimensional submanifolds (the blue curves
labeled A,B,C,D) of a 2-dimensional ambient manifold that has a hole in it:

A B C D

Submanifolds A and B are continuous deformations of each other, and C and
D are continuous deformations of each other, but A and C are not continuous
deformations of each other because one cannot be obtained from the other by a
continuous series of infinitesimal changes without breaking the curve.

A continuous deformation of X preserves the boundary if the boundary of
X remains unchanged throughout the process. These pictures show four different
1-dimensional submanifolds, all with the same boundary (same pair of endpoints):

A B C D

Submanifolds A and B are boundary-preserving continuous deformations of each
other, and C andD are boundary-preserving continuous deformations of each other,
but A and C are not boundary-preserving continuous deformations of each other.

13The name continuous deformation is standard in the physics literature (example: Harlow and Ooguri (2021)).
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8 Topological operators

Let X0 be a submanifold of spacetime, and let [X0] be the family of submanifolds
that can be obtained from X0 by continuous deformations of X0 that preserve its
boundary. A family of operators U(X) ∈ M(X), one for each X ∈ [X0], is called
a topological operator if it satisfies this condition:14,15

Topological invariance condition

For each X ∈ [X0] and each operator O(Y ) ∈M(Y ), the operator
τ
(
U(X),O(Y )

)
∈ A is invariant under all boundary-preserving

continuous deformations of X that don’t intersect Y during the
deformation process.

The name topological operator is also used for each individual representative
U(X) of the family. The operators U(X) in the family are not all equal to each
other as elements ofM, but the invariance condition implies that they are all equal
to each other as elements of A.16,17

An operator can satisfy this invariance condition without being localized on the
manifold’s boundary ∂X0. That fact is the foundation for a fruitful generalization
the concept of symmetry. This article introduces that generalization with emphasis
on the two most widely-used cases: zero-form symmetries and one-form symmetries.

14Sections 4-5 defined τ (· · · ) and explained what operator means here.
15This definition of topological operator is more general than the definition of symmetry operator in section 9.

Sometimes the definition of topological operator might include the invertibility condition that section 9 imposes
on symmetry operators. That condition is omitted here to accommodate the surface-localized Wilson operators
W • defined in article 40191, which are not invertible when the surface has a boundary and the gauged group is
nonabelian.

16To deduce this, take O(Y ) to be the identity operator.
17Bhardwaj et al (2024), text around equations (2.39)-(2.40)
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9 Symmetry operators

Let X be an oriented submanifold of spacetime. An invertible topological operator
U(X) is also called a symmetry operator.18,19 The examples in this article have
the property

U
(
X−1

)
=
(
U(X)

)−1
(1)

where X−1 is the orientation-reversed version of of X.20

Suppose X has a boundary, and let X1 and X2 be continuous deformations of
X that preserve both its boundary and its orientation, and suppose that X1∪X−1

2

is itself the boundary of a higher-dimensional submanifold. Then we can define a
topological operator U(X1∪X−1

2 ) localized on the closed manifold X1∪X−1
2 by21,22

τ
(
U(X1 ∪X−1

2 ), ...
) M≡ τ

(
U(X1), U(X−1

2 ), ...
)

(2)
M
= τ

(
U(X1),

(
U(X2)

)−1
, ...
)
.

Given a symmetry operator U(X), section 11 will define the corresponding sym-
metry in a way that works whether X has a boundary or not. Section 17 will use
the relationship (2) to relate the with-boundary and without-boundary versions to
each other.

18Bhardwaj et al (2024), definition 2.1; Luo et al (2024), equation (2.3)
19Non-invertible symmetry is another generalization of the concept of symmetry in which the topological

operators implementing the symmetry are not required to be invertible (Davighi (2025), section 2; Córdova et al
(2024), second paragraph).

20Section 2
21Section 5 defined τ (· · · ).
22If we were trying to make this definition precise in continuous spacetime, we would need to address exactly what

happens at the shared boundary of X1 and X2. Most models of quantum fields in 3- or 4-dimensional spacetime have
never been constructed directly in continuous spacetime, though. The examples that will be used in this article are
precisely defined by treating spacetime as a lattice (article 82508), and the boundary of X in these examples does
not intersect any sites, links, or (when the operator described as a modification of the integrand of the path integral)
plaquettes. For these examples, the boundary of X does not require any special treatment.
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10 The symmetry group

A symmetry operator and its inverse, together with the identity operator,23 form
a group with respect to composition of operators. This is typically part of a larger
group of symmetry operators Uh(X) that are indexed by an element h of an abstract
group H called the symmetry group and that satisfy the fusion rule24,25

τ
(
Uh(X), Uh′(X)

) M
= Uhh′(X). (3)

If h is the identity element of H, then Uh(X) is the identity operator. This implies

Uh−1(X)
M
=
(
Uh(X)

)−1
.

In a d-dimensional spacetime with trivial topology, if X has fewer than d − 1
dimensions, then H must be abelian.26,27

23The identity operator always qualifies as symmetry operator.
24Iqbal (2024), text around equations (V.1)-(V.3); Bhardwaj et al (2024), text around equation (2.44)
25When the manifold X occupies only a single time (instead of being extended in time), the left side of this equation

reduces to the ordinary algebraic product of operators on a Hilbert space (Bhardwaj et al (2024), text after equation
(2.20)).

26Gaiotto et al (2015), text after equation (3.1); Bhardwaj et al (2024), text below equation (2.45)
27If spacetime has nontrivial topology, then H can be nonabelian even if dim(X) ≤ d − 1 (Gaiotto et al (2015),

text after equation (3.1) and appendix F; Freed et al (2007), section 3). One example in the cited sources involves
electric and magnetic fluxes on closed surfaces (dim(X) = 2) for a U(1) gauge field in a spacetime with topology
R×RP3 (example after equation (3.37)). The example uses the fact that the second integer cohomology group of this
space has torsion (article 28539). In less sophisticated terms, it uses the fact that RP3 (denoted S3/Z2 in appendix
F) has closed surfaces that are neither contractible nor orientable. The fact that electric and magnetic fluxes on
non-closed surfaces don’t commute with each other when their boundaries are linked is elementary (article 44135),
but that isn’t an example of a nonabelian H because equation (3) only uses one surface X.
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11 p-form symmetries

Let U(Msym) be a symmetry operator localized on an oriented submanifold Msym

of spacetime that may have a boundary, and let Mchg be a submanifold that does
not have a boundary. An operator O(Mchg) ∈ M is called charged with respect
to that symmetry if28

τ
(
U(X ′),O(Mchg)

) A
6= τ

(
U(X),O(Mchg)

)
(4)

for some pair of submanifolds X and X ′ that do not intersect Mchg and that can
both be obtained from Msym by continuous deformations that preserve its boundary
(if any) and its orientation.

The inequality (4) implies that the process of continuously deforming X to X ′

(preserving the boundary) must involve intermediate manifolds that do intersect
Mchg, even though X and X ′ do not.29 Section 14 will show that in d-dimensional
spacetime, this is only possible if

dim(Msym) + dim(Mchg) ≥ d− 1. (5)

For this reason, the symmetry defined by U(Msym) is called a p-form symmetry,
where p is the minimum value of dimMchg allowed by the inequality (5).30 The
name comes from the fact that the charged operators O(Mchg) are often constructed
by integrating a p-form over the submanifold Mchg. The case p = 0 includes the
traditional concept of a global symmetry in quantum field theory.31 Cases with
p ≥ 1 are called higher-form symmetries.

28With this relatively relaxed definition, the sum of a charged operator and an uncharged operator would still be
called charged. The definition can be made more specific by decomposing the action of the symmetry transformation
into irreducible representations of the symmetry group (Luo et al (2024), equation (2.1); Schafer-Nameki (2023),
equation (2.10); Harlow and Ooguri (2021), equation (8.12) (using the canonical formulation)). Then some operators
have a well-defined charge (which may be zero, so uncharged operators are a special case) and some do not.

29This follows from the premise that U(Msym) is a topological operator (sections 8 and 9).
30Gaiotto et al (2015); reviewed in Harlow and Ooguri (2021), section 8
31Sections 24-25 will illustrate this.
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12 Picture of an Msym with a boundary

These pictures illustrate a setup in which the left and right sides of (4) can be
unequal. The two pictures represent the left and right sides of (4). The manifolds
X and X ′ (which are boundary-preserving deformations of Msym) are shown in
blue, and Mchg is shown in black. The dimensions are d = 3, dim(Msym) = 1,
dim(Mchg) = 1. In this example, Msym has a boundary.

Mchg

X

x

y

t

Mchg
X ′

x

y

t
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13 Picture of an Msym without a boundary

These pictures illustrate another setup in which the left and right sides of (4) can be
unequal. The two pictures represent the left and right sides of (4). The manifolds
X and X ′ (which are boundary-preserving deformations of Msym) are shown in
blue, and Mchg is shown in black. The dimensions in this example are the same as
in section 12, but now Msym does not have a boundary.

Mchg

X

x

y

t

Mchg
X ′

x

y

t

16



cphysics.org article 09181 2025-11-14

14 The dimension condition (5)

To understand why the dimension condition (5) is a necessary condition for the
inequality (4), let Mfill be the union of all the submanifolds in the continuous series
of submanifolds that traces out the deformation from X to X ′. In more precise
terms, Mfill is the image of a continuous map h from Msym × I into spacetime,
where I is the interval [0, 1] ⊂ R, with h(0) = X and h(1) = X ′. If the dimension
condition (5) were not satisfied, then dim(Mfill) + dim(Mchg) would be less than d.
That implies that we could choose the homotopy h so that Mfill does not intersect
Mchg,

32 and then then the premise that U(Msym) is a symmetry operator implies
that the left and right sides of (4) must be equal.33 This shows that the inequality
(4) is possible only if the inequality (5) holds.

Here are a few examples of the manifold Mfill in the previous paragraph. In
these examples, the dimension condition (5) is satisfied.

• In the example shown in section 12, we can take the manifold Mfill to be a
disk pierced once by Mchg. The boundary of the disk is the circle formed by
connecting the segments X and X ′ in that picture at their shared boundary
(their shared endpoints in this case), after reversing the orientation of one so
the circle has a single orientation consistent with the orientation of the disk.

• In the example shown in section 13, we can take the manifold Mfill to be
topologically a hollow cylinder whose curved surface is pierced once by Mchg.
The boundary of the cylinder has two components, which are the circles
X and X ′ shown in the picture (again oriented to be consistent with the
cylinder’s orientation).

• Another possibility is that either X or X ′ could be the empty set, in which
case the other one is the whole boundary of Mfill. An example of this is
obtained by deleting the circle X ′ from the picture in section 13, in which
case we can take Mfill to be a disk whose whole boundary is X.

32This is intuitively clear when d ≤ 3.
33Footnote 29 in section 11
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15 p-form symmetries at a single time

In the path integral formulation, the algebraic product of two operators that are
both localized at the same time is implemented by displacing one of the operators
slightly into the future or past of the other one so that their time order matches
the desired algebraic order.34 This section uses that idea to express the single-time
limit of the inequality (4) using ordinary algebraic products.

Let Ms denote the spatial manifold at a single time.35 Let Mchg be a sub-
manifold of Ms without a boundary, and let Msym be a submanifold of Ms that
is homeomorphic to an n-dimensional ball including its boundary. Suppose those
manifolds satisfy these conditions:

• dim(Mchg) + dim(Msym) = dim(Ms),

• Mchg and Msym intersect each other only at isolated points (or not at all),

• Mchg does not intersect ∂Msym.

Let U(Msym) be an invertible topological operator localized on Msym, and let X
and X ′ be manifolds obtained by bending Msym slightly into the future and past,
respectively, without changing its boundary, so that X and X ′ no longer intersect
Mchg. Then both sides of (4) become time-ordered products, so the condition (4)
may be written36

U(X ′)O(Mchg) 6= O(Mchg)U(X), (6)

using ordinary algebraic products. In the limit where the bending is arbitrarily
slight, the manifolds X and X ′ approach Msym, so the condition becomes

U(Msym)O(Mchg) 6= O(Mchg)U(Msym). (7)

This is a single-time limit of the inequality (4), expressed using ordinary algebraic
products.

34Article 63548
35Section 2
36The undecorated symbol 6= is unambiguous in this case because the products are algebraic products, so the

operators are understood to be regarded as elements of A.
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16 Pictures of single-time arrangements

These pictures show three different configurations of manifolds Mchg and Msym

satisfying the conditions in section 15. The first example illustrates the case
dim(Ms) = 2, dim(Mchg) = 0, dim(Msym) = 2:

Mchg Msym

x

y

The manifold Msym is shaded blue, and its boundary is the dark blue curve. The
next example illustrates the case dim(Ms) = 3, dim(Mchg) = 1, dim(Msym) = 2:

Mchg

Msym

x

y

z

The next example illustrates the case dim(Ms) = 2, dim(Mchg) = 1, dim(Msym) = 1:

Mchg

Msym x

y

The manifold Msym is the blue line, and its boundary is the pair of points marked
by the blue dots.
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17 The effect of a symmetry on a charged operator

The inequality (7) may also be written

U(Msym)O(Mchg)U
−1(Msym) 6= O(Mchg). (8)

This expresses the symmetry as an automorphism of the operator algebra (whose
effect on O(Mchg) is nontrivial) instead of as an automorphism of the Hilbert space.
Thanks to equation (2), the inequality (8) may be viewed as the single-time version
of

τ
(
U(X ′ ∪X−1),O(Mchg)

) A
6= O(Mchg). (9)

For an example, suppose spacetime is three-dimensional (d = 3) and that Msym

and Mchg are both one-dimensional. In the inequality (8), choose Msym and Mchg

as depicted here:

Mchg

Msym x

y

Then the left side of the corresponding inequality (9) is as depicted here:

Mchg
X ′

X

x

y

t
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18 Symmetry operators on manifolds with different
boundaries

Section 17 explained that if U(·) is a symmetry operator and X and X ′ share the
same boundary, then

U(X ′)U−1(X) = U(X ′ ∪X−1).

This motivates thinking of U(X) and U(X ′∪X−1) as belonging to the same family
of topological operators, even though X has a boundary and X ′ ∪X−1 does not.

The same closed manifold X ′ ∪ X−1 can also be assembled in other ways, say
as

Y ′ ∪ Y −1 = X ′ ∪X−1 (10)

where Y and Y ′ have the same boundary as each other but not the same boundary
of X. This motivates thinking of U(X) and U(Y ) as belonging to the same family
of topological operators even though X and Y have different boundaries.

This is illustrated below using one-dimensional manifolds:

X

X′ 

Y Y′ 

In this example, the closed manifold (10) is a circle. The shared boundary of X
and X ′ is one pair of points, and the shared boundary of Y and Y ′ is a different
pair of points. Arrows indicate the orientations of X,X ′, Y, Y ′. The orientations
are such that X and X ′ are boundary-preserving continuous deformations of each
other, and so are Y and Y ′. To form a closed oriented manifold, the orientations
of one of the constituents in each pair must be reversed, as in (10).

21
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19 Example of a zero-form symmetry: outline

The rest of this article will explore examples of p-form symmetries, including one
detailed example of a zero-form symmetry (p = 0) and a few examples of one-form
symmetries (p = 1).

Sections 20-29 treat the zero-form case will in detail, first using the path integral
formulation and then using the canonical formulation in which the model is
defined by specifying the equation of motion and equal-time commutation relations
for the field operators. This example illustrates how the concept of zero-form
symmetry relates to the traditional concept of symmetry. Here’s an outline:

• Section 20 uses the path integral formulation to introduce the model and one
of its symmetries. Spacetime is treated as a lattice so math is unambiguous
and elementary.

• Sections 21-23 shows that the symmetry is a zero-form symmetry as defined
in section 11. This provides one of the easiest examples of a topological
operator.

• Section 24 describes the same model in the canonical formulation.

• Section 25 uses the canonical formulation of the symmetry to illustrate the
inequality (8).

• Sections 26-27 derive the topological invariance property again, this time
using the canonical formulation.

• Sections 28-29 use these symmetry operators to illustrate the distinction be-
tween the two types of composition mentioned in section 5.

After that detailed exposition of the zero-form symmetry example, sections 31-34
will focus on examples of one-form symmetries.
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20 Massless scalar field: path integral formulation

This section reviews the path integral formulation for a model of a single free
massless scalar field. This model will be used to illustrate the concept of a zero-
form symmetry.

The path integral is expressed in terms of real-valued field variables φ(x), one for
each point x in spacetime. Spacetime is treated as a lattice, so x is a discrete index.
We can take the lattice to be periodic in the spatial directions so the number of
field variables in any finite time interval is finite. The path integral has the form37

Ψ′[φ]t′ ∝
∫
<t′

[dφ] eiS[φ]Ψ[φ]t (11)

where Ψ and Ψ′ are the initial and final states, [φ]t denotes the set of field variables
at time t, the integral is over of the field variables at times in the range ≥ t and
< t′, each field variable in that range is integrated from −∞ to ∞. The action is

S[φ] =
∑
(x,y)

r(x, y)
(
φ(x)− φ(y)

)2
(12)

where the sum is over links38 and the coefficients r(x, y) are real-valued. For any
real number c, the action (12) is clearly invariant under the shift

φ(x)→ φ(x) + c for all x. (13)

Sections 21-23 will show that this symmetry of the action corresponds to a zero-
form symmetry of the model.

This is a model of a free massless scalar field. This model has two different
variants.39 In the variant that will be used here, the operators φ(x) are themselves
observables, and the symmetry (13) is spontaneously broken in the infinite-volume

37Article 63548
38A link is an ordered pair of neighboring points in the lattice.
39Article 37301
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limit.40 Even though the action is invariant under (13), the path integral (11)
is still well-defined because the initial state Ψ is understood to be normalizable:∫

[dφ]
∣∣Ψ[φ]

∣∣2 is finite. Such a state cannot be invariant under (13), and that’s
okay: (13) still a symmetry of the collection of observables, even though it’s not a
symmetry of any individual state.

40Article 37301 calls this the frozen variant of the model. In a different variant of the model (called the trimmed
variant in article 37301), an operator is not considered to be an observable unless it is invariant under φ→ φ+ c.
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21 Construction of the symmetry operator

For any A ∈ M, the result of applying the modification A to the integrand of a
path integral

∫
[dφ] eiS[φ]Ψ[φ] will be denoted A

∫
[dφ] eiS[φ]Ψ[φ]. The initial state

Ψ[φ] depends only on the field variables φ associated with the initial time. The
action S[φ] is a function only of the link variables φ(x, y) ≡ φ(x) − φ(y). For
each real number c and for each link (x, y) in the time interval covered by the path
integral, define an operator Uc(x, y) ∈M by

Uc(x, y)

∫
[dφ] eiS[φ]Ψ[φ] =

∫
[dφ] eiS

′[φ]Ψ[φ]

where S ′[φ] is obtained from S[φ] by replacing

φ(x, y)→ φ(x, y)− c
φ(y, x)→ φ(y, x) + c. (14)

Think of the lattice as a special set of points in smooth spacetime and think of the
links as straight line segments connecting neighboring points. Suppose the space-
time manifold is oriented, and let X be an oriented submanifold with codimension
1 in spacetime that doesn’t intersect any lattice points and whose boundary ∂X
(if X has a boundary) doesn’t intersect any links. We can think of choosing the
orientation of X as choosing which side is the “front.” Define an operator

Uc(X)
M≡

∏
(x,y)↗X

Uc(x, y) (15)

where the right side is an abbreviation for the composition of operators Uc(x, y)
over all links (x, y) that intersect X from back-to-front. Section 22 will show that
this is a topological operator, and section 23 will show that it generates a one-form
symmetry under which the field operator is charged.
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22 Derivation of the topological property

This section shows that the operator Uc(X) defined in section 21 is a topological
operator. Define

Uc(x)
M≡
∏
y

Uc(x, y) (16)

where the right side is the composition of the operators Uc(x, y) whose links have
their first endpoint at x. Choose any point x in the spacetime lattice that is after
(not at) the initial time.41 Applying the modification Uc(x) to the integrand of
the path integral is equivalent to replacing every occurrence of the field variable
φ(x) with φ(x) + c. This has no effect on the path integral, because the integral
over −∞ < φ(x) <∞ is invariant under any shift of the integration variable φ(x).
This shows that when Uc(x) is regarded as an element of A, it is just the identity
operator:

Uc(x)
A
= identity operator. (17)

Now let x be an endpoint of any link that pierces X, and let X ′ be a manifold
obtained from X by a continuous deformation that passes through the point x
during the deformation process but not through any other points, as illustrated in
figure 1. The definitions (15) and (16) imply that the sign in U±c(x) can be chosen
to enforce

τ
(
Uc(X), U±c(x)

) M
= Uc(X

′). (18)

This process may be iterated to achieve any boundary-preserving continuous de-
formation of the manifold X that avoids the initial time. Combine this with the
identity (17) to conclude that Uc(X) is a topological operator as defined in section
8.

41This restriction ensures that only factor in the integrand that depends on φ(x) is eiS , not the initial state Ψ.
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Figure 1 – These pictures illustrate the configuration in equation (18). Spacetime is 2-
dimensional (d = 2). Gray dots are points in the lattice. Thin gray lines are links. The
left picture shows the manifold X as a vertical blue line. The links involved in the composition
on the right side of equation (15) are highlighted by thick gray arrows. The middle picture
depicts the operator U±c(x). The links involved in the composition on the right side of equation
(16) are highlighted by thick gray arrows. The large gray dot is the point x. The right picture
shows the manifold X ′ as a blue line, now rerouted around the opposite side of the point x.
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23 The zero-form symmetry

Define an operator φ(x) ∈M by

φ(x)

∫
[dφ] eiS[φ]Ψ[φ] ≡

∫
[dφ]φ(x)eiS[φ]Ψ[φ].

In this equation, the same symbol φ(x) is used for two different things: it denotes
an operator (left side) and an integration variable (right side). The operator φ(x)
is called the field operator, and the integration variable φ(x) is called the field
variable. This section shows that the operators Uc(X) defined in section 21 gen-
erate a zero-form symmetry and that the field operator is charged with respect to
that symmetry. This corresponds to the symmetry (13) of the action.

The operator Uc(X) is clearly invertible: its inverse is U−c(X). Section 22
showed that it is also a topological operator, so it is a symmetry operator as defined
in section 9.

Let X ′ be a continuous deformation of X, let Mfill be a d-dimensional volume
whose boundary is X ′∪X−1, and let x be a point in Mfill that is not an endpoint of
any link intersected by the boundary. Then the compositions τ

(
Uc(X), φ(x)

)
and

τ
(
Uc(X

′), φ(x)
)

are both defined. We can’t quite use equation (18) to morph X
to X ′ when the factor of φ(x) is in the integrand because the composition is only
defined for hypersurfaces that don’t come too close to x,42 but we can shift the
integration variables without changing the value of the integral, just like we did to
derive equation (17). If the factor φ(x) were absent, then we could apply shifts to
all the points in Mfill to convert Uc(X) to Uc(X

′). If the factor φ(x) is present, then
one of those shifts replaces that factor with φ(x)± c. This gives

τ
(
Uc(X), φ(x)

) A
= τ

(
Uc(X

′), φ(x)± c
)
,

which is an example of the inequality (4). It says that the field operator φ is charged
with respect to the zero-form symmetry generated by Uc(X).

42This is a lattice version of the condition “don’t intersect x” in smooth spacetime.
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24 Massless scalar field: canonical formulation

The canonical formulation can be derived from the path integral formulation
by taking a continuous-time limit.43 This section reviews the canonical formu-
lation without derivation. Space is treated space as a lattice to keep the math
unambiguous, but smooth-space notation is used here to make the equations more
recognizable.

For each point x in d-dimensional spacetime, φ(x) is an operator on the Hilbert
space in the Heisenberg picture. These operators satisfy the equation of motion∑

0≤k≤d−1

∂2
kφ(x) = 0 (19)

and the equal-time commutation relation

[φ(y, t), φ̇(x, t)] = iδd−1(x− y), (20)

where φ̇ is the derivative of φ with respect to time and [A,B] ≡ AB −BA. In the
canonical formulation, the model is defined by declaring that the operators φ(x)
satisfy (19)-(20).44

If c is any real number times the identity operator, then the transformation

φ(x)→ φ(x) + c (21)

is a symmetry (in the traditional sense) of the model specified by (19)-(20): making
the replacement (21) in those equations does not change them, and preserves it the
original association between observables and regions of spacetime. Section 25 will
explain how to express this as a zero-form symmetry as described in section 15.

43Article 63548
44Article 52890 uses the canonical formulation to show that these two conditions are compatible with each other,

without the help of the path integral formulation.
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25 The zero-form symmetry again

For simplicity, suppose that the spatial manifold Ms is closed so integrals over
Ms can be defined without specifying boundary conditions. To describe a unitary
operator that implements the symmetry (21), first define

U(V, t) ≡ exp

(
ic

∫
x∈V

φ̇(x, t)

)
(22)

where V is a region of space. That operator implements a version of the symmetry
(21) whose effect on operators at time t is localized within V :45,46

U(V, t)φ(x, t)U−1(V, t) =

{
φ(x, t) + c if x ∈ V,
φ(x, t) otherwise.

(23)

If V is the whole spatial manifold Ms, then (22) is independent of time,47 and it
generates the symmetry (21) for all x:

U(Ms, ·)φ(x)U−1(Ms, ·) = φ(x) + c. (24)

The time-independence of (22) when V = Ms is a special case of a more general
result that will be derived in sections 26-27. That result will show that U(V, ·) is a
topological operator, so comparing equation (24) to (8) reveals that U(V, ·) is the
symmetry operator for a zero-form symmetry under which the field φ is charged.
This shows that (21) is an example of a zero-form symmetry.

45To deduce this quickly, use the fact that φ acts like i times the derivative with respect to φ̇ (equation (20)).
46The symmetry (21) is called splittable because it has a local version (23) that has a nontrivial effect on some

observables (Harlow and Ooguri (2021), definition 2.3). Recall that φ(x) is an observable in this model (section 20).
47To prove this, define Q(t) to be the integral of φ̇(x, t) over all of Ms. Use the equation of motion (19) to write

dQ(t)/dt in terms of the laplacian of φ with respect to the spatial coordinates, and then use the assumption that Ms

is closed to conclude that the integral representing dQ(t)/dt is zero. This shows that Q(t) is independent of time.
This is a special case of a result that will be derived in sections 26-27.
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26 Topological invariance: canonical formulation

In equation (22), the integration domain V is a (d − 1)-dimensional volume at a
given time. The definition (22) has a generalization in which V can be any spacelike
oriented submanifold of spacetime with codimension 1:48

U(V ) ≡ exp

(
ic

∫
x∈V

n · ∂φ(x)

)
n · ∂ ≡

∑
0≤k≤d−1

nk∂k, (25)

where n is a timelike unit vector orthogonal to V at x. Consider two such V s,
say V1 and V2, that share the same oriented boundary49 and that together form the
boundary ∂Mfill of a d-dimensional closed subset50 Mfill of d-dimensional spacetime.
This is illustrated in figure 2 on the next page. More precisely, if V −1

2 is the
orientation-reversed version of V2, then

∂Mfill = V1 ∪ V −1
2 . (26)

The hypersurfaces V1 and V2 are assumed to be spacelike, so the manifold Mfill

has a corner at their shared boundary.51,52 Section 27 will derive the topological
invariance property

U(V1) = U(V2). (27)

The restriction to spacelike V ensures that the field operators in the exponent all
commute with each other. Section 22 used the path integral formulation to show
that this restriction isn’t really necessary, but it simplifies things in the canonical
formulation.

48To make this unambiguous, the sign of the vector n needs to be specified. This will be done implicitly in the
equivalent definition (28).

49Suppose that V1 and V2 are submanifolds of spacetime so that no parts of their boundaries are missing (section
2).

50Recall the convention in section 2 about the word closed.
51Article 44113 reviews the concept of a corner in the context of smooth manifolds.
52Mfill could also be a manifold without corner if V1 and V2 are both Cauchy hypersurfaces whose boundaries

are empty. (This is consistent with ∂V1 = ∂V2.) That arrangement is possible because the assumed topology of
spacetime (section 2) implies that each Cauchy hypersurface is a compact manifold that wraps around the spatial
torus.
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Mfill

V1

V2

space

time

Figure 2 – Example of equation (26) in two-dimensional spacetime (d = 2). The region Mfill

(shaded gray) is bounded by two spacelike hypersurfaces V1 and V2 (blue). The shared boundary
of V1 and V2 is a pair of points (blue). In three-dimensional spacetime, the analogous example
would be a lens-shaped region Mfill bounded by two disks V1 and V2 that bulge into the future
and past, respectively, and whose shared boundary is a circle (the sharp edge of the lens). In the
path integral formulation (and also in the canonical formulation after replacing the exponential
in the definition (25) with a time-ordered exponential), the sharp edges can be replaced by
rounded edges because V1 and V2 no longer need to be spacelike everywhere.
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27 Topological invariance: derivation

This section uses Stokes’s theorem53 to show that the unitary operator U(V )
defined in (25) is invariant under continuous deformations54 of V that preserve its
boundary.

The definition (25) may also be written53

U(V ) ≡ exp

(
ic

∫
V

? dφ

)
(28)

where ? dφ is the Hodge dual of the (operator-valued) one-form dφ with respect
to the Minkowski metric on d-dimensional spacetime. In this definition, the ori-
entation of the manifold V is understood to be specified.53 The definition (28) is
equivalent to (25) with a particular choice of the sign of the normal vector n.

The equation of motion (19) may be written d(? dφ) = 0, and Stokes’s theorem
still holds for manifolds with corners,55 so

0 =

∫
Mfill

d(? dφ) (equation of motion)

=

∫
∂Mfill

? dφ (Stokes’s theorem)

=

∫
V1

? dφ+

∫
V −1

2

? dφ (equation (26))

=

∫
V1

? dφ−
∫
V2

? dφ (reverse orientation).

Use this with equation (28) to get the desired result U(V1) = U(V2).

53Article 91116
54Section 1
55Lee (2013), theorem 16.25
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28 Composing operators: example, part 1

This section illustrates the distinction between the two types of composition in
sections 4-5.

Define V1 and V2 as in section 26, and let Mfill be the region bounded by V1 and
V2. Choose a point x ∈ Mfill in the future of V2 but in the past of V1. The result
derived in section 27 implies

φ(x)U(V1)|ψ〉 = φ(x)U(V2)|φ〉

for all states |ψ〉 and all points x in spacetime. The left side of this equation is not
time-ordered.

The path integral formulation56 automatically enforces time-ordering.57 The
time-ordered quantities are U(V1)φ(x)|ψ〉 and φ(x)U(V2)|φ〉, and they are not al-
ways equal to each other.58 Explicitly,59

τ
(
U(V1), φ(x), U−1(V2)

)
=

{
φ(x) + c if x ∈Mfill,

φ(x) otherwise.
(29)

Equation (29) says that φ(x) has a nonzero charge with respect to the zero-form
symmetry implemented by the unitary operators (28). Equation (23) is a special
case of equation (29), namely the case where the time-differences between V1, x,
and V2 are infinitesimal.

56Section 20
57Article 02242
58This illustrates the inequality (6).
59This illustrates the inequality (9).
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29 Composing operators: example, part 2

Define M and A as in section 4. The composition on the right side of equation
(29) treats the operators as elements of M, so it does not necessarily reduce to
the algebraic product U(V1)φ(x)U−1(V2) when regarded as an element of A.60 To
understand why this is important, suppose the point x is either in the causal past
of V2 or in the causal future of V1 (outside Mfill, but not spacelike to it). In that
case, even though φ(x) does not commute with U(V1) and U(V2), the left side of
(29) is either φ(x)U(V1)U

−1(V2) or U(V1)U
−1(V2)φ(x), and these are both equal to

φ(x) because U(V1) and U(V2) are equal to each other as ordinary operators on the
Hilbert space (equation (27)).

Equation (24) is true for all x. This works because (24) is expressed using the
algebraic product. If x is restricted to some finite time interval, then equation (24)
could also be written

τ
(
U(M+

s , ·), φ(x), U−1(M−
s , ·)

)
= φ(x) + c

where M+
s and M−

s are in that the future and past, respectively, of that time
interval. To express (24) using the composition τ without any restriction on x, we
can use equation (29) supplemented by the assertion that U(V ) is a topological
operator. This is not as concise as equation (24), but it conveys more insight
because equation (29) is more flexible: it does not require V1 to be equal to V2 or
to be a Cauchy surface. It doesn’t even require V1 and V2 to be purely spacelike.

60In this example, the composition τ can legitimately be called the time-ordered product, because U(V ) can be
factorized into a product of point-localized operators, and these factors can be individually rearranged.
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30 Relating the two formulations

This section explains how to relate the canonical representation of the symmetry
operator (equation (22)) to its path integral representation (equation (15)).

In both formulations, a state is represented by a function Ψ[φ] of the field
variables φ(x) at a single time, say t. In the canonical formulation, if x is a point
in spacetime at time t, then the operator φ̇(x) is represented as a derivative:61

φ̇(x)Ψ[φ] =
−i
εd−1

∂

∂φ(x)
Ψ[φ]

where ε is the lattice spacing. Equivalently,

exp
(
icεd−1φ̇(x)

)
Ψ[φ] = Ψ[φ′] φ′(y) =

{
φ(y) + c if y = x,

φ(y) otherwise.

Using this representation of φ̇ in equation (22) reproduces equation (23) at this one
value of t.62

Now suppose that the initial state in the path integral (11) is

Ψ[φ] = Uc(V )Ψ0[φ] Uc(V ) ≡ exp

(
ic

∫
x∈V

φ̇(x)

)
Integrate-by-parts to transfer the differential operator Uc(V ) from the factor Ψ0[φ]
to the factor eiS[φ]:∫

[dφ] eiS[φ]Uc(V )Ψ0[φ] =

∫
[dφ]

(
U−c(V )eiS[φ]

)
Ψ0[φ] =

∫
[dφ] eiS[φ′]Ψ0[φ]

where φ′(x) = φ(x) − c if x ∈ V and φ′(x) = φ(x) otherwise. The action S[φ]
depends only on the differences φ(x, y) ≡ φ(x)− φ(y) for links (x, y), so S[φ′] may

61Article 52890
62The sum εd−1

∑
x∈V f(x) is a discretized version of the integral

∫
x∈V d

d−1x f(x).
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also be obtained from S[φ] by making the replacement (14) for all links that have x
as an endpoint. To relate this to the path integral representation of the symmetry
operator (equation (15)), define a (d− 1)-dimensional hypersurface X like this:

• Start with the hypersurface V , which sits exactly at the initial time t.

• If the boundary of V intersects any points in the lattice, then push it slightly
outward (still at time t) so that it doesn’t.

• Shift the hypersurface forward in time to t + ε/2, but drag its boundary
backward in time to t− ε/2. Call the resulting hypersurface X.

The hypersurface X intersects just the links whose link variables are shifted to
obtain S[φ′] from S[φ] as described above. The timelike links intersected by X
have one endpoint in V at time t and the other endpoint at time t + ε. The
spacelike links intersected by X have both endpoints at time t, one inside V and
one outside V . Using this X in equation (15) reproduces the representation of the
symmetry operator derived above from the canonical formulation. The reasoning in
section 22 can be used to show that this operator (as an element of A) is invariant
under boundary-preserving continuous deformations of X restricted to times after
the initial time. The boundary of X remains at (actually slightly before) the initial
time.

Beware that the path integral representation of the symmetry operator (22) is
not given by replacing φ̇(x) with the discrete version of the time derivative of the
field variable φ(x). Section 35 will explain why that doesn’t work.
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31 Center symmetry: path integral formulation

This section reviews an example of a one-form symmetry (p = 1 in section 11).
The context is a model whose only field is a gauge field.63 The gauged group G

is any compact Lie group, not necessarily connected and possibly even finite, but
the most commonly considered cases are G = SU(n) and G = U(1). Spacetime
is d-dimensional with d ≥ 3 so the gauge field has both electric (time-space) and
magnetic (space-space) components.64

The model has a family of topological operators Tz(Σ) called ’t Hooft oper-
ators65 where Σ is a (d− 2)-dimensional submanifold of d-dimensional spacetime,
possibly with a boundary, and z is any element of the center of G (which means z
commutes with everything in G). If z is the identity element of G, then Tz(Σ) is the
identity operator. The model also has operators Wr(C) called Wilson operators
where C is a closed curve in spacetime and r is an irreducible representation of G.

Suppose that Σ is the boundary of a (d − 1)-dimensional ball V in spacetime
(Σ = ∂V ), and suppose that Σ and C don’t intersect each other. Then, in the path
integral formulation,66

τ
(
Tz(Σ), Wr(C)

)
= r(z)η(C,V )Wr(C) (30)

where η(C, V ) is the intersection number between C and V .67 According to section
11, equation (30) says that if r(z) 6= 1, then the Wilson operators Wr(C) are
charged under the one-form symmetry generated by the ’t Hooft operators Tz(Σ).
This one-form symmetry is called center symmetry because the symmetry group
(section 10) is the center of G.

63If the model includes matter fields, then the center symmetry described in this section may be partially or
completely broken (Sulejmanpasic and Gattringer (2019), section 2.1). It may be spontaneously broken even if
matter fields are absent, but then it is still a symmetry as defined in sections 11 and 15.

64Article 31738
65Article 82508 constructs these operators in the path integral formulation.
66Section 5 defined τ (· · · ).
67Article 44113
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32 Center symmetry: canonical formulation

Now suppose that Σ and C are both restricted to a single time, allow Σ to have a
boundary, and suppose that C intersects Σ only transversely (if at all). Then, in
the canonical formulation, these operators satisfy68,69,70

Tz(Σ)Wr(C)
(
Tz(Σ)

)−1
= r(z)η(C,Σ)Wr(C) (31)

where η(C,Σ) is the intersection number between C and Σ. This is another way
to express the fact that if r(z) 6= 1, then the Wilson operators Wr(C) are charged
under the one-form symmetry generated by the ’t Hooft operators Tz(Σ).71

The relationship between the arrangements for the canonical formulation (31)
and the path integral formulation (30) is easy to draw when spacetime is three-
dimensional (d = 3), like in section 17:

• The first picture in that section illustrates the arrangement on the left side
of equation (31) when the manifolds Msym = Σ and Mchg = C intersect each
other once.

• The second picture in that section illustrates the corresponding arrangement
on the left side of equation (30) with Σ = X ′ ∪X−1. We can think of this Σ
as two copies of the Σ in (31), bowed into the future and past, respectively,
like the picture in section 12.

68Gaiotto et al (2017), equation (2.5) (for the case G = SU(N) and d = 4)
69Article 53519 constructs Tz(Σ) in the canonical formulation and derives equation (31) for arbitrary G and d.
70This is analogous to equation (23).
71Section 15
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33 Center symmetry: more examples

This section describes a few examples of arrangements on the left side of equation
(31) in four-dimensional spacetime (three-dimensional space).

• Example in which Σ has a boundary: The middle picture in section 16
illustrates the arrangement on the left side of equation (31) when the manifold
Msym = Σ is a disk that intersects the loop Mchg = C once.

• Example in which Σ is closed and contractible: If Σ is the boundary of
a 3-dimensional ball V in space, then η(C,Σ) = 0 because the intersections
come in oppositely-oriented pairs that cancel each other. In this case, Tz(Σ)
is the identity operator when it is viewed as nothing more than an operator on
the Hilbert space. This is consistent with equation (31). On the other hand,
this same Tz(Σ) is nontrivial when viewed as a modification of the integrand
of the path integral.72 This is consistent with equation (30), because η(C, V )
can be nonzero even though η(C,Σ) = η(C, ∂V ) is zero.

• Example in which Σ is closed and non-contractible: Suppose the
spatial manifold is a cube with opposite faces identified. Topologically, this
is a three-dimensional torus (a cartesian product of three circles). Take C to
be a closed loop parallel to one of the cube’s axes, so it wraps around one
dimension of the torus. Take Σ to be the closed surface given by a plane
orthogonal to C, so Σ is wraps around the other two dimensions of the torus.
Then C intersects Σ exactly once, even though both manifolds are closed,
so η(C,Σ) = ±1. In this case, equation (31) says the operators Tz(Σ) and
Wr(C) don’t commute with each other when r(z) 6= 1. This shows that Tz(Σ)
can be nontrivial as an operator on the Hilbert space even if Σ is closed.

72Section 4
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34 One-form symmetries in electrodynamics

Consider compact electrodynamics (gauged group U(1)) without matter. In this
context, the operators that generate the center symmetry reviewed in sections 31-33
are related to something more familiar: electric flux. In the canonical formulation,
when Σ is restricted to a single time, the ’t Hooft operator Tz(Σ) is related to the
electric flux operator E(Σ) by73,74

Tz(Σ) = eiαE(Σ)/q2

with z = eiα (32)

where q is a unit of electric charge75 and α is a real number.76 This is often called
the electric one-form symmetry.77,78

In four-dimensional spacetime, electrodynamics also has a magnetic one-form
symmetry79 generated by the topological Wilson operators73,80

W(S) = eiβB(S)/~, (33)

where β is a non-integer81 real number and B(S) is the magnetic flux operator on
a surface S.

73Article 44135
74The group U(1) is abelian, so z can be any element of U(1).
75Article 26542 introduces the units convention used here.
76If α is an integer multiple of 2π, then (32) is the identity operator.
77McGreevy (2022), section 2.1; Brennan and Hong (2023), section 2.2.1; Benedetti et al (2025), section 3.2
78Section 2.1 in Sulejmanpasic and Gattringer (2019) calls it the electric center symmetry.
79When spacetime is d-dimensional, the magnetic symmetry is a (d− 3)-form symmetry (Heidenreich et al (2021),

section 3.4.2).
80Article 40191 constructs topological Wilson operators for nonabelian gauged groups G, but the operators con-

structed there are not invertible, so they don’t qualify as symmetry operators as defined in section 9.
81If β were an integer, then (33) would depend only on the boundary ∂S of the surface S, so it would not generate

a symmetry. This is also mentioned in Sulejmanpasic and Gattringer (2019), section 2.1. Article 40191 explains the
relationship between topological and non-topological Wilson operators more generally, for any compact connected
gauged group G.
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35 Appendix

This section reviews two different ways to represent the operator φ̇(x) in the in-
tegrand of a path integral and shows that they are not interchangeable when the
operator is exponentiated as in (22). This substantiates the warning that was issued
at the end of section 30.

For simplicity, consider a scalar field in zero-dimensional space, so space has only
one point and the “field” consists of a single not-necessarily-harmonic oscillator.
Then the path integral for a single time-step is82,83

Ψt+dt(s
′) ∝

∫ ∞
−∞

ds eiS(s′,s)Ψt(s)

where Ψt(s) is the state at time t as a function of the single field variables s, and
the action is

S(s′, s) =
(s′ − s)2

2 dt
− dt v(s) (34)

for some real-valued function v(s) with a finite lower bound. Consider the identity∫ ∞
−∞

ds eiS(s′,s) ∂

∂s
Ψ(s) = −

∫ ∞
−∞

ds

(
∂

∂s
eiS(s′,s)

)
Ψ(s)

=

∫ ∞
−∞

ds eiS(s′,s)

(
i
s′ − s
dt

+O(dt)

)
Ψ(s).

This says that when dt is small enough, the linear operator Ψ(s) → ∂
∂sΨ(s) can

be represented by inserting a factor of i(s′ − s)/dt into the integrand of the path
integral. In contrast, when n > 1, the linear operator

Ψ(s)→
(
∂

∂s

)n
Ψ(s)

82Article 63548
83This is also the single-time-step path integral for a model of a single nonrelativistic spinless particle living in a

one-dimensional space parameterized by the coordinate s.
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is not represented by inserting
(
i(s′− s)/dt

)n
, not even as an approximation when

dt is small. This is demonstrated by the case n = 2, where the same steps as before
lead to the identity∫ ∞

−∞
ds eiS(s′,s)

(
∂

∂s

)2

Ψ(s) =

∫ ∞
−∞

ds eiS(s′,s)

(
−(s′ − s)2

dt2
+O(dt) +

i

dt

)
Ψ(s).

The constant84 term i/dt is not negligible when dt is small. The corresponding
relationship for the shift operator exp(r ∂/∂s) with r ∈ R is∫ ∞

−∞
ds eiS(s′,s) exp

(
r
∂

∂s

)
Ψ(s) =

∫ ∞
−∞

ds eiS(s′,s)Ψ(s+ r)

=

∫ ∞
−∞

ds eiS(s′,s−r)Ψ(s)

=

∫ ∞
−∞

ds eiS(s′,s)eir(s
′−s)/dteibΨ(s) (35)

with b = r2

2 dt + dt
(
v(s − r) − v(s)

)
. When dt is small enough to ignore the s-

dependent term, the relationship (35) reduces to∫ ∞
−∞

ds eiS(s′,s) exp

(
r
∂

∂s

)
Ψ(s) ∝

∫ ∞
−∞

ds eiS(s′,s)eir(s
′−s)/dtΨ(s). (36)

This shows that in the shift operator exp(r ∂/∂s), replacing ∂/∂s with i(s′−s)/dt is
valid only near the continuous-time limit and only up to an overall proportionality
factor eib that behaves badly as dt→ 0. A similar conclusion holds in d-dimensional
spacetime for any d.

84Here, constant means independent of the field variables (s and s′).
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