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Clifford Algebra,
Lorentz Transformations,

and Spin Groups
Randy S

Abstract Article 03910 introduced Clifford algebra, which
is sometimes also called geometric algebra. This article uses
Clifford algebra to construct the spin group, which is a double
cover of the part of the Lorentz group that is generated by pairs of
reflections. This is a prerequisite for the idea of a spinor field,
which is an important ingredient in our current understanding
of nature. The construction and basic topological properties of
the spin group are explained for arbitrary signatures (p, q) with
p + q ≥ 2, including euclidean signatures (either p or q is 0),
lorentzian signatures (either p or q is 1), and other signatures (p
and q are both ≥ 2).
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1 Introduction

In quantum field theory, observables are typically expressed in terms of (quantum)
fields. This is useful partly because fields simplify the task of describing how
observables at different times are related to each other.

The fields themselves are not necessarily observables, so a given transformation
might not affect any observables even if it does affect the fields. This can have
interesting topological implications. Consider a one-parameter family of transfor-
mations T (r), one for each 0 ≤ r ≤ 1. If the first and last transformations (T (0)
and T (1)) both leave all observables unaffected, then the function T (r) defines a
closed loop in the space of possible effects on the observables. If the fields are not
observables, then we can have a situation in which T (0) doesn’t affect the fields
but T (1) does, even though neither one affects observables. Then the function T (r)
describes a path that is not closed in the space of possible effects on the fields, even
though it is closed in the space of possible effects on the observables.

In models with spinor fields, the situation described in the previous paragraph
does occur. The spin group,1 a group of transformations of the spinor fields, is a
double cover 2 of the Lorentz group that acts on observables.3 The Lorentz group
has closed paths that come from non-closed paths in the spin group.

Using Clifford algebra4 to make the math easy, this article explains how to con-
struct the spin group. The fact that every Lorentz transformation is a composition
of reflections is then used to build some geometric intuition about the topology
of the spin group in various dimensions and signatures, including non-lorentzian
signatures.

1Section 12
2Section 2
3Spinor fields are also fermion fields, which means that field operators separated by a spacelike interval anticom-

mute with each other. The two-to-one relationship between the spin group and the Lorentz group is possible because
a product of an even number of fermion field operators can be an observable, but a product of an odd number fermion
field operators cannot.

4Article 03910

4



cphysics.org article 08264 2024-03-04

2 Group theory and topology: some basic definitions

A homomorphism from one group Σ to another groupG is a map that respects the
group structure.5,6 The group Σ is called a double cover of G if a homomorphism
ρ : Σ → G exists that assigns two different elements of Σ to each element of G.
In this article, G and Σ will both be Lie groups. Roughly, a Lie group is both
a group and a smooth manifold whose group structure and smooth structure are
compatible with each other in a natural way.7 In a context where all of the groups
are Lie groups, all of the homomorphisms are usually understood to be Lie group
homomorphisms – maps that respect both the smooth structure and the group
structure. In this article, the name Lie group homomorphism will be abbreviated
homomorphism.

A manifold is called connected if every point can be reached from every other
point by a continuous path. A Lie group may or may not be connected. Two con-
tinuous closed paths are called homotopic to each other if one can be continuously
morphed into the other without breaking it during the process. A manifold is called
simply connected if all continuous closed paths are homotopic to each other.8,9

Examples: the two-dimensional sphere (the surface of a three-dimensional ball) is
simply connected, but a circle (the one-dimensional boundary of a two-dimensional
disk) is merely connected, not simply connected.

5Article 29682
6In sections 18-25, the symbols G and Σ will be used as abbreviations for the groups SO+(p, q) and Spin+(p, q).

These groups will be defined in sections 4 and 12, respectively.
7Chapter 7 in Lee (2013) introduces Lie groups. Appendix A in Harlow and Ooguri (2021) gives a more concise

introduction.
8Hatcher (2001), proposition 1.6 and the text above it
9According to this definition, simply connected implies connected.
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3 Scalar product and signature

In this article, the only aspect of spacetime that matters is the scalar product
between vectors at a single point in spacetime, as defined by the metric tensor.
If spacetime is a d-dimensional manifold, then the space of vectors at a given
point is a d-dimensional vector space over the real numbers R. Given two vectors
u = (u1, ..., ud) and v = (u1, ..., ud) in this d-dimensional vector space,10 their scalar
product is

g(u,v) = (u1v1 + · · ·+ upvp)− (up+1vp+1 + · · ·+ up+qvp+q), (1)

where (p, q) is a pair of nonnegative integers with p+ q = d. Two vectors u,v are
called orthogonal to each other if g(u,v) = 0. In this context, referring to g(v,v)
as the norm of v is convenient.11 The norm may be positive, negative, or zero. A
nonzero vector v with g(v,v) = 0 will be called self-orthogonal.12 Such vectors
exist if p and q are both nonzero.

The pair (p, q) is called the signature. The signature is called euclidean if
either p or q is equal to 0. The signature is called lorentzian if either p or q is
equal to 1, which is normally implied when the word spacetime is used. This article
considers all signatures, not just euclidean and lorentzian, even though those two
cases have the most immediate relevance to physics.

10This article uses lowercase boldface letters to denote vectors.
11Porteus (1995) (chapter 4, page 22) calls this the quadratic norm.
12When the signature is lorentzian, a self-orthogonal vector is often called lightlike. A vector v with g(v,v) 6= 0

may be called either timelike and spacelike, depending on the sign of g(v,v) and on whether the signature is (p, 1)
or (1, p) (article 48968). This article uses the language positive norm and negative norm instead.
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4 Groups of isometries

An isometry is a linear transformation of the d-dimensional vector space that
leaves the scalar product invariant. In symbols: a linear transformation v → ρ(v)
is called an isometry if

g
(
ρ(u), ρ(v)

)
= g(u,v).

When the signature is lorentzian, the group of isometries is called the Lorentz
group. This article uses the more generic term isometry group, which avoids
committing to any particular signature. When the signature is (p, q), the isometry
group is denoted O(p, q). When p = 0 or q = 0, this is called an orthogonal
group. When p and q are both nonzero, it’s called an indefinite orthogonal
group or pseudo-orthogonal group.

Every isometry is a composition of reflections.13 These subgroups of O(p, q) are
of special interest:14

• SO(p, q): an isometry belongs to this subgroup if and only if it may be
expressed as a composition of an even number of reflections.15 This is called
the (indefinite) special orthogonal group.

• SO+(p, q): an isometry belongs to this subgroup if and only if it may be
expressed as a composition of reflections consisting of an even number of
reflections (possibly zero) along directions r with g(r, r) > 0 and an even
number (possibly zero) along directions r with g(r, r) < 0.

If p = 0 or q = 0, then SO+(p, q) = SO(p, q). Otherwise, SO+(p, q) is a proper
subgroup of SO(p, q). The group SO+(p, q) is of special interest because it is
connected16 for every signature (p, q). In this article, it will be called the connected
isometry group.17

13Article 39430, and statement (2.4.5) in Benn and Tucker (1989)
14The notation SO+(p, q) is common but not universal. Sources that use it include Borghini (2018), section V.1.2c,

page 61. Other notations include SO+(p, q), SO(p, q)0, and SO↑(p, q).
15Varadarajan (2004), theorem 5.2.1
16Section 2 defined connected, and section 16 will show that SO+(p, q) has this property.
17It has also been called the reduced special orthogonal group (Harvey (1990), chapter 1, page 13).
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5 Topology of the connected isometry group

The Lie group SO+(p, q) is connected.18 This section reviews another basic fact
about the topology of SO+(p, q):

When p ≥ 2 or q ≥ 2 (or both), SO+(p, q) is
not simply connected.

Sections 18-25 will offer some geometric intuition about why this is true. This
section reviews some of the ingredients that can be used in a proper proof.

When a manifold M is not simply connected, its fundamental group π1(M)
conveys information about how it fails to be simply connected.19 Elements of this
group are equivalence classes of closed paths that can be continuously morphed
into each other, and the group structure (the rule for composing elements) is based
on the idea of combining paths that cross each other.20 If two closed paths in a
manifold cross each other, then we can reinterpret them as a single closed path,
just be reinterpreting the crossing as a pair of sharp turns that touch each other
at their corners. This can be used to define a group in which each element is a
class of closed paths that are all homotopic each other and in which the product is
the act of merging two paths by reinterpreting a crossing as a pair of sharp turns.
A connected manifold is simply connected if and only if its fundamental group is
trivial – that is, if and only if all closed paths can be continuously deformed into
each other even without reinterpreting crossings as sharp turns.

The fundamental group of a connected Lie group G is the same as the funda-
mental group of any maximal compact subgroup K ⊂ G, which is a compact
subgroup that is not contained within any larger compact subgroup other than G

18Section 16
19The fundamental group of M still doesn’t tell us everything about the topology of M . The fundamental group

π1(M) is just one of an infinite family of homotopy groups πk(M), and even this whole infinite family still doesn’t
tell us everything about the topology of M .

20Hatcher (2001), section 1.1
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itself. The identity π1(G) = π1(K) follows from the Cartan-Iwasawa-Malcev
theorem, which says21 that that K is automatically connected (if G is), that the
topology of K is uniquely determined by G,22 and that G is topologically equivalent
to K × Rm for some m ≥ 0.

To determine the fundamental group of SO+(p, q), we can use the fact that each
of its maximal compact subgroups is equivalent to SO(p)×SO(q),23 together with
the isomorphism π1(X×Y ) = π1(X)×π1(Y )24,25 The fundamental group of SO(2)
is Z, the additive group of integers. For p ≥ 3, the fundamental group of SO(p)
is is Z2, the additive group of integers modulo 2, which has only two elements.26,27

Using these ingredients, we can determine π1(SO
+(p, q)) whenever p ≥ 2 or q ≥ 2.

In particular, we can use these ingredients to deduce that SO+(p, q) is not simply
connected if p ≥ 2 or q ≥ 2, as stated at the beginning of this section.28

This article will use more elementary methods to anticipate this basic property
of SO+(p, q).

21Armstrong (2018), page 9
22G may have many different maximal compact subgroups, but they all have the same topology.
23Section 3 in Conrad (2018) lists two maximal compact subgroups for SO(p, q). One of them is also a subgroup

of SO+(p, q).
24Padgett (2014), lemma 2.27
25This is an example of a Künneth formula (Hatcher (2001), chapter 3, text below theorem 3.15).
26Fletcher (2022), section 4.1, above table 4.1
27Sections 19-21 will help explain, intuitively, why these statements about π1(SO(p)) are true.
28For extra fun: section 4.1 in Fletcher (2022) tabulates the homotopy groups of a related family of Lie groups,

which that author calls GO(p, q). Those Lie groups include both isometries and dilations.
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6 Review of Clifford algebra

To simplify the task of constructing a double cover of the connected isometry group,
this article uses Clifford algebra. Article 03910 introduces Clifford algebra. This
section gives a brief review.

Let e1, ..., ed be a list of linearly independent vectors, so that every vector v can
be written

v = v1e1 + v2e2 + · · ·+ vded.

The components v1, v2, ..., vd of v are real numbers. Given this d-dimensional
vector space over R, the largest associative algebra generated by those vectors
together with an identity element is called a tensor algebra. The tensor algebra
has a basis consisting of the scalar 1, the vectors ei (d of these), the products eiej
(d2 of these), the products eiejek (d3 of these), and so on. These are all linearly
independent elements of the tensor algebra. In particular, ejek and ekej are not
proportional to each other unless j = k. The scalar 1 serves as the multiplicative
unit element. The product is associative, distributive, and linear. Imposing the
additional relation

ab + ba = 2g(a,b). (2)

for all vectors a,b changes the tensor algebra to a Clifford algebra. The quantity
g(a,b) on the right-hand side is defined by equation (1). Two vectors a,b are
orthogonal to each other if and only if ab = −ba (in words: if and only if they
anticommute with each other). According to equations (1) and (2), we can choose
the basis vectors ek so that

ejek + ekej =


2 if j = k ∈ {1, 2, ..., p},
−2 if j = k ∈ {p+ 1, p+ 2, ..., p+ q},
0 if j 6= k.

(3)

Such a basis will be used often in this article.

10



cphysics.org article 08264 2024-03-04

7 Using Clifford algebra to describe reflections

Using Clifford algebra, the effect of a reflection along the direction r is described
by the transformation v→ ρr(v) with

ρr(v) ≡ −rvr

r2
(4)

for all vectors v. This is defined for any vector r with r2 6= 0. To show that (4)
really does describe a reflection, use equation (2) to write the numerator as

rvr = −r2v + 2g(v, r)r,

which gives

ρr(v) = v − 2g(v, r)

g(r, r)
r. (5)

Equation (5) is the usual way to describe a reflection.29

Reflections preserve the scalar product:

g
(
ρr(a), ρr(b)

)
= g(a,b).

In other words, reflections are isometries.30 Equations (2) and (4) make the proof
easy:

g
(
ρr(a), ρr(b)

)
=

rar rbr + rbr rar

2(r2)2

=
rabr + rbar

2r2
=

r g(a,b) r

2r2
= g(a,b).

29Article 39430
30Section 4
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8 Isometries from reflections

Every isometry may be expressed as a composition of reflections.31 Transformations
in the connected isometry group may be expressed as a composition of reflections in
which the numbers of reflections along directions with positive norm and negative
norm are both even. The next few sections will describe a convenient way to package
the composition of two reflections with the same norm, using Clifford algebra. This
section enumerates the cases.

Let e1 and e2 be mutually orthogonal vectors: g(e1, e2) = 0. These two vectors
span a plane. The possibilities are:

• Case 0: The plane does not contain any self-orthogonal directions. This can
be separated into two subcases:

– Case 0a: The plane contains only directions v with g(v,v) > 0.

– Case 0b: The plane contains only directions v with g(v,v) < 0.

• Case 1: The plane contains exactly one self-orthogonal direction. Again,
this can be separated into two subcases:

– Case 1a: The plane includes some directions v with g(v,v) > 0.

– Case 1b: The plane includes some directions v with g(v,v) < 0.

• Case 2: The plane contains exactly two self-orthogonal directions, so it
contains both positive-norm and negative-norm directions.

• Case 3: The plane contains only self-orthogonal directions.

For the study of isometries generated by reflections, only cases 0,1,2 are relevant.
Case 3 is not relevant, because reflections along self-orthogonal directions are not
defined.32

31Section 4
32Case 3 doesn’t occur at all when the signature is euclidean or lorentzian, which are the signatures of greatest

interest in physics. It occurs only when the signature (p, q) has both p ≥ 2 and q ≥ 2.

12
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9 Isometries from reflections: case 0

In this case, the plane contains only positive-norm directions or only negative-norm
directions. Within this plane, choose two vectors e1 and e2 that are orthogonal to
each other and normalized so that e2

1 = e2
2. Consider a sequence of two reflections

along any two directions in this plane. Without loss of generality, we can take one
of the two directions to be e1, and we can take the other one to be

r = e1 cos θ + e2 sin θ.

The identity cos2 θ + sin2 θ = 1 implies r2 = e2
k.

Let ρ(v) denote the result of reflecting v first along r and then along e1. With
our choices of ek and r, equation (4) implies

ρ(v) = RvR−1

with
R ≡ e1r R−1 = re1.

The notation R−1 is appropriate because R−1R = RR−1 = 1.
Define33

B ≡ e1e2.

Our assumptions about e1 and e2 imply B2 = −1. We have not yet specified the
sign of σ ≡ e2

k. The analysis is almost the same for either sign, but the cases σ = 1
and σ = −1 will be handled separately for clarity:34,35

R ≡ e1r = cos θ +B sin θ = eθB if σ = 1,

R ≡ e1r = − cos θ +B sin θ = −e−θB if σ = −1.

33Mnemonic: B stands for bivector.
34In section 8, these were called case 0a and case 0b, respectively.
35As in article 18505, eθB is defined to be the unique function of θ that satisfies d

dθ e
θB = BeθB and that equals 1

when θ = 0.

13
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These generalize Euler’s formula. Writing R this way simplifies the task of
calculating ρ(v).

Every vector v may be written v = xe1+ye2+zp, where x, y, z are real numbers
and p is orthogonal36 to both e1 and e2. Reflections are linear transformations, so
after we know how the reflections affect each of these three terms, we automatically
know how it affects v. The effects are:

• e1 anticommutes with B, so

ρ(e1) = eθBe1e
−θB = e2θBe1 = e1 cos(2θ)− e2 sin(2θ) if σ = 1,

ρ(e1) = e−θBe1e
θB = e−2θBe1 = e1 cos(2θ)− e2 sin(2θ) if σ = −1.

• e2 anticommutes with B, so

ρ(e2) = eθBe2e
−θB = e2θBe2 = e2 cos(2θ) + e1 sin(2θ) if σ = 1,

ρ(e2) = e−θBe2e
θB = e−2θBe2 = e2 cos(2θ) + e1 sin(2θ) if σ = −1.

• p commutes with B, so

ρ(p) = eθBpe−θB = p if σ = 1,

ρ(p) = e−θBpeθB = p if σ = −1.

This shows that the sign of σ does not affect the final result. We recognize the
result as an ordinary rotation through angle 2θ in the e1-e2 plane. Notice that the
rotation angle is twice the angle between the reflections. This simple fact will be
essential for understanding the relationship between figures 1 and 2 in section 20.

Sections 10-11 analyze the remaining cases. Those analyses are similar to this
one, so those sections will be more concise.

36Mnemonic: p stands for perpendicular.
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10 Isometries from reflections: case 1

In this case, the plane contains exactly one self-orthogonal direction h. Let e1 be
any vector in the plane that is orthogonal to h and for which e2

1 = ±1. Consider
a sequence of two reflections along any two non-self-orthogonal directions in this
plane. Without loss of generality, we can take one of the two directions to be e1,
and we can take the other one to be

r = e1 + βh.

The propertis h2 = 0 and e1h = −he1 ensure that r2 = e2
1 for every value of β.

Let ρ(v) denote the result of reflecting v first along r and then along e1. With
our choices of ek and r, equation (4) implies

ρ(v) = RvR−1

with R ≡ e1r and R−1 = re1, as before. Use the abbreviations σ ≡ e2
1 and B ≡ e1h

like before, but now B2 = 0. This gives

R = σ + βB R−1 = σ − βB.

Every vector v may be written v = xe1 + yh + zp, where x, y, z are real numbers
and p is orthogonal to both e1 and h. The effects on the three terms are:

• e1 anticommutes with B, so

ρ(e1) = Re1R
−1 = R2e1 = (1− β2 + 2βB)e1 = (1− β2)e1 − 2βh.

• Bh = hB = 0, so
ρ(h) = RhR−1 = h.

• p commutes with B, so
ρ(p) = RpR−1 = p.

This is called a null rotation in the e1-h plane.

15
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11 Isometries from reflections: case 2

In this case, the plane contains both positive-norm directions and negative-norm
directions. Within this plane, choose two vectors e1 and e2 that are orthogonal to
each other and normalized so that e2

1 = −e2
2. Consider a sequence of two reflections

along any two directions in this plane that are both have the same norm. Without
loss of generality, we can take one of the two directions to be e1, and we can take
the other one to be37

r = e1 cosh θ + e2 sinh θ.

The identity cosh2 θ − sinh2 θ = 1 implies r2 = e2
1.

Let ρ(v) denote the result of reflecting v first along r and then along e1. With
our choices of ek and r, equation (4) implies

ρ(v) = RvR−1

with R ≡ e1r and R−1 = re1, as before. Use the abbreviations σ ≡ e2
1 and B ≡ e1e2

like in section 9, but now B2 = 1. This gives

R ≡ e1r = σ cosh θ +B sinh θ = σeσθB.

Every vector v may be written v = xe1 + ye2 + zp, where x, y, z are real numbers
and p is orthogonal to both e1 and e2. The effects on these three terms are:

• e1 and e2 both anticommute with B, so

ρ(e1) = Re1R
−1 = R2e1 = e1 cosh(2θ)− e2 sinh(2θ)

ρ(e2) = Re2R
−1 = R2e2 = e2 cosh(2θ) + e1 sinh(2θ)

• p commutes with B, so
ρ(p) = RpR−1 = p.

We recognize the result as a boost with rapidity 2θ in the e1-e2 plane.
37The functions cosh θ and sinh θ are defined in article 77597.
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12 The spin groups

This section defines two Lie groups: the group Spin(p, q), and a subgroup of
Spin(p, q) that will be denoted Spin+(p, q). Both will be called spin groups.38

The group Spin+(p, q) is the focus of this article.39

Every element of the isometry group O(p, q) is a composition of reflections. If
the reflections are along the directions r1, ..., rn with r2

k = ±1, then the effect of
their composition on a vector v is40

v→

{
RvR̃ if n is even,

−RvR̃ if n is odd,
(6)

with
R = rn · · · r2r1 R̃ = r1r2 · · · rn. (7)

The spin groups may be defined like this:

• Spin(p, q) is the group of elements of the Clifford algebra that may be written
in the form R ≡ rn · · · r2r1 with r2

k = ±1 and with an even number n of vectors
in the product.41 If R ∈ Spin(p, q), then the transformation (6) belongs to
SO(p, q).

• Spin+(p, q) is the subgroup of Spin(p, q) whose members R satisfy R̃R = 1.
If R ∈ Spin+(p, q), then the transformation (6) belongs to SO+(p, q).

The definition of any group G includes a rule for composing two elements of G to
get another element of G. In the spin groups, that rule is just the Clifford product:
the composition of R and R′ is RR′, the Clifford product of R and R′.

38The name spin group, with no other qualifiers, usually refers to Spin(p, q). The other group Spin+(p, q) has been
called the reduced spin group (Harvey (1990), chapter 10, page 200).

39This is also the focus in Varadarajan (2004) (section 5.4, page 193, and also Varadarajan (2003), section 5.3),
which uses the notation Spin for the group that I’m calling Spin+. If p = 0 or q = 0, then Spin(p, q) = Spin+(p, q),
so the distinction doesn’t matter in that case.

40Section 7
41Figueroa-O’Farrill (2015), page 7
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13 Another way to define the spin groups

Section 12 defined the spin groups in a relatively direct way. Much of the literature42

uses an approach that is less direct. This section offers some guidance about how
to relate the two approaches to each other.

The less-direct approach starts by defining the Clifford group Γ(p, q). Then it
defines Pin(p, q) as a special subgroup of Γ(p, q),43,44 and then it defines the spin
groups as special subgroups of Pin(p, q). After unrolling these layers, the resulting
definition says that an element R of the Clifford algebra belongs to Spin(p, q) if
and only if it satisfies all of these conditions:

• R has a multiplicative inverse R−1, and RvR−1 is a vector whenever v is a
vector.

• R is an even element of the Clifford algebra, which means that it is a sum of
products of vectors with an even numbers of vectors in each product.

• R−1 = ±R̃, with R̃ defined to be the result of reversing the order of the
vectors in each product in R.45,46

The definition used in section 12 clearly satisfies these conditions. The converse –
that these conditions imply the definition in section 12 – is not so obvious. The
key is to show that any R satisfying the first condition may be written as a single
product of vectors, as required by equation (7). To show this,47 use equation (2)
to get g(RaR−1, RbR−1) = g(a,b), and then use the fact that every isometry is a
composition of reflections.48

42Examples include Lounesto (2001), section 17.2; and Benn and Tucker (1989), page 46
43Harvey (1990) defines the Pin and Spin groups directly (definitions 10.1 and 10.3), like in section 12.
44Borcherds (2012) contrasts two conflicting definitions of the Pin group (text below definition 195 on page 69).
45A map R→ RT is called an anti-automorphism if (AB)T = BTAT and (A+B)T = AT +BT and (sA)T = sAT

for all scalars s. The map R→ R̃ is defined to be the unique anti-automorphism satisfying ṽ = v for all vectors v.
46RR̃ has been called the spinor norm of R (text above proposition 197 in section 14.1 in Borcherds (2012),

which uses the notation RT instead of R̃).
47Benn and Tucker (1989), page 44
48Section 4
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14 Signature symmetry

For most pairs (p, q), the Clifford algebras with signatures (p, q) and (q, p) are
different algebras.49 Example: the Clifford algebra with signature (0, 2) has three
mutually anticommuting elements whose norms are all equal to −1, but the Clifford
algebra with signature (2, 0) does not.

In contrast, for every pair (p, q), the two spin groups Spin(p, q) and Spin(q, p)
are always isomorphic to each other.50 To prove this, let C be the Clifford algebra
with signature (p, q), and let C̄ be the Clifford algebra with signature (q, p). Let
ek be mutually orthogonal vectors in C satisfying

e2
k =

{
1 if k ∈ {1, ..., p},
−1 if k ∈ {p+ 1, ..., p+ q},

and let ēk be mutually orthogonal vectors in C̄ satisfying

ē2
k =

{
−1 if k ∈ {1, ..., p},

1 if k ∈ {p+ 1, ..., p+ q}.

These are algebras over R, the field of real numbers, but we can formally identify
ēk = iek where i commutes with everything and satisfies i2 = −1. The factors of
i cancel in the spin group, because the spin group involves only products of even
numbers of vectors. As a result, this formal identification has only one effect on
the spin group, namely to replace R → −R whenever R is a product of an (even)
number of vectors that is not a multiple of 4. This replacement doesn’t affect the
multiplication table, so Spin(p, q) and Spin(q, p) are isomorphic to each other.

The fact that Spin(p, q) and Spin(q, p) are isomorphic to each other implies
that SO(p, q) and SO(q, p) are isomorphic to each other, because SO(p, q) may
be constructed (as an abstract group) from Spin(p, q) by ignoring the difference
between R and −R for all R ∈ Spin(p, q).

49They are different even as plain algebras (article 03910), not just as Clifford algebras.
50Porteus (1995), chapter 16, page 146
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15 Spin+(p, q) is a double cover of SO+(p, q)

The group Spin(p, q) is a51 double cover of SO(p, q), and the group Spin+(p, q) is
a double cover of SO+(p, q). This section focuses on the second assertion.52,53

The group Spin+(p, q) clearly covers SO+(p, q) at least twice, because changing
the sign of a vector in the product (7) doesn’t change anything in (6). In fact,
Spin+(p, q) coveres SO+(p, q) exactly twice:54 it is a double cover of SO+(p, q).

To prove this, let R be a product of an even number of vectors r with r2 = 1
and an even number of vectors r with r2 = −1 so that R ∈ Spin+(p, q). Suppose
that R satisfies

RvR̃ = v for all vectors v. (8)

Multiply both sides on the right by R to get Rv = vR, which implies that any R
satisfying (8) commutes with everything in the Clifford algebra (because vectors
generate the whole Clifford algebra). This shows that R must be a real number. R
is a product of vectors whose norms are ±1, so R2 = ±1. Combined with the fact
that R is a real number, this implies R = ±1. This shows that exactly two elements
of Spin+(p, q) correspond to the identity element of SO+(p, q), so Spin+(p, q) covers
SO+(p, q) exactly twice.

51The indefinite article “a” is used here because a given Lie group may have more than one double cover (https:
//math.stackexchange.com/questions/4609709/). Every Lie group G has at least one double cover, namely
Z2 ×G, where Z2 is the two-element group, but that double cover is not connected.

52Both assertions are acknowledged in Lounesto (2001), section 17.2; and in Porteus (1995), proposition 16.14.
53Footnote 39 in section 12
54Lounesto (2001), section 17.2; and Varadarajan (2004), section 5.4, page 193
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16 Is Spin+(p, q) connected?

The group Spin+(1, 1) is not connected.55 To confirm this, let e1 and e2 be mutually
orthogonal vectors with e2

1 = 1 and e2
2 = −1. Every R ∈ Spin+(1, 1) has the form

R = x+ye1e2 with real coefficients x, y such that RR̃ = 1. This implies x2−y2 = 1,
which describes a pair of hyperbolas in the x-y plane: one with x > 0, and one
with x < 0. These are not connected to each other because x cannot be zero, so
Spin+(1, 1) is not connected.

If p or q is ≥ 2, then the group Spin+(p, q) is connected.55 To deduce this, let
e1 and e2 be mutually orthogonal vectors with either e2

1 = e2
2 = 1 or e2

1 = e2
2 = −1.

Then (e1 cos θ + e2 sin θ)e1 is equal to ±1 when θ ∈ {0, π}, and the cases θ = 0
and θ = π have opposite signs. This shows that −1, regarded as an element of
Spin+(p, q), can be continuously morphed to 1. If p ≥ 1, then let r+ be a vector
with g(r+, r+) = 1. If q ≥ 1, then let r− be a vector with g(r−, r−) = −1. If p and
q are both ≥ 1, then choose these two vectors to be orthogonal to each other so
that

r+r− = −r−r+. (9)

Starting with (7), each factor rk with g(rk, rk) > 0 may be continuously morphed
to either r+ or −r+, and each factor rk with g(rk, rk) < 0 may be continuously
morphed to either r− or −r−. After those morphs, we can use equation (9) to
rearrange the factors so that all factors of r+ are to the left of all factors of r−.
The product involves an even number of each of these two vectors, so using r2

± =
±1 reduces the whole product to ±1. We already determined that −1 can be
continuously morphed to 1, so this shows that the group Spin+(p, q) is connected.

This implies that SO+(p, q) is connected, too, including SO+(1, 1), because
SO+(p, q) is obtained (as an abstract group) from Spin+(p, q) by ignoring the dif-
ference between R and −R.

Unlike Spin+(p, q), the group Spin(p, q) has two connected components when p
and q are both nonzero.56

55Lounesto (2001), section 17.2; Varadarajan (2004), section 5.4, page 193; and Varadarajan (2003), section 5.3
56Figueroa-O’Farrill (2010), section 3.2, page 22
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17 Is Spin+(p, q) simply connected?

If p or q is ≥ 2, then the group Spin+(p, q) is connected, but it may or may not
be simply connected, depending on the signature (p, q). Here’s a summary of the
results:57,58

• If either p or q is ≤ 1 and the other one is ≥ 3, then Spin+(p, q) is simply
connected.

• If either p = 2 or q = 2, then Spin+(p, q) is not simply connected.

• If p ≥ 3 and q ≥ 3, then Spin+(p, q) is not simply connected.

Some examples are listed here:

signature simply con’d?
(2, 0) no
(2, 1) no
(2, 2) no
(3, 0) yes
(3, 1) yes
(3, 2) no
(3, 3) no

signature simply con’d?
(4, 0) yes
(4, 1) yes
(4, 2) no
(4, 3) no
(4, 4) no

The results are the same if p and q are exchanged.59 In the most physically relevant
cases (euclidean signature with ≥ 3 dimensions, and lorentzian signature with ≥ 4
dimensions), the group Spin+(p, q) is simply connected even though SO+(p, q) is
not.

The remaining sections explain how these results – and the results about SO+(p, q)
that were summarized in section 5 – can all be anticipated intuitively, using the
formulation that was described in sections 7 and (12).

57Sati and Shim (2015), section 3.3
58Spin+(1, 1) is not connected, but the connected component that contains the identity element is simply connected.
59Section 14
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18 Intuition for (p, q) = (2, 0)

The groups G ≡ SO+(2, 0) and Σ ≡ Spin+(2, 0) are not simply connected.60

To establish this, let e1 and e2 be mutually orthogonal vectors normalized so
that e2

1 = e2
2 = 1. Every element of Σ may be written as

R = e1r

with
r ≡ e1 cos θ + e2 sin θ (10)

for some θ. This says that Σ is topologically equivalent to a circle: every element
of Σ corresponds to a point on the unit circle, specified by the angle θ.

The unit circle is the prototypical example of a manifold that is not simply
connected. One example of a closed path on the unit circle is the one that goes
from θ = 0 to θ = 2π, which wraps once around the unit circle. Another example
is the path that stays at θ = 0, which is a single point on the unit circle. These two
paths are clearly not homotopic to each other: the first one cannot be continuously
morphed to the second one without breaking it somewhere, because every point on
the path must remain on the unit circle during the process. This shows that Σ is
not simply connected.

To show that G is also not simply connected, use the fact that two points
that differ by δθ = π in Σ are mapped to the same point in G (because the
corresponding vectors (10) are equal to each other except for the overall sign), so
G is still topologically a circle – still not simply connected.

60The abbreviations G and Σ are specific to this section. Subsequent sections will recycle the symbols G and Σ
for other signatures.
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19 Intuition for (p, q) = (3, 0)

The group G ≡ SO+(3, 0) is not simply connected, but Σ ≡ Spin+(3, 0) is.61 This
section explains how to anticipate those results intuitively.

Every transformation in G may be written as in equation (6) with R equal
to the product of two unit vectors. The group Σ consists of all such two-vector
products. Explicitly, every element of Σ has the form R = r′r with unit vectors r′

and r. Suppose that r′(λ) and r(λ) both trace out closed paths on the unit sphere
as λ goes from 0 to 1. Then R(λ) ≡ r′(λ)r(λ) traces out a closed path in Σ as λ
goes from 0 to 1. From here, the fact that every closed path on the unit sphere is
homotopic to a point (which should be intuitively clear) immediately implies that
every closed path in Σ is also homotopic to a point. In other words, Σ is simply
connected.

What about G? A path that is closed in Σ is also closed in G, so if r′ and r
both trace out closed paths on the unit sphere, then the corresponding path in G
(defined by equation (6) with R = r′r) is also homotopic to a point in G, just like
it is in Σ. However, the group G hosts other closed paths that cannot be described
this way, and those other closed paths are not homotopic to a point.

For one example, consider any path in Σ for which R goes from 1 to −1. This
path is not closed in Σ, but it is closed in G. If we continuously morph the path,
then it remains closed in G only if it always includes two points whose Rs are each
other’s negatives. In other words, the path must always have two endpoints that
are on opposite sides of the manifold Σ. With that restriction, the path cannot be
continuously morphed to a point in Σ, which implies that it can’t be continuously
morphed to a point in G, either. This doesn’t revoke Σ’s simply-connected status,
because this path isn’t closed in Σ. It it closed in G, though, so the fact that it
can’t be continuously morphed to a point means that G is not simply connected.

61Remember footnote 60 in section 18.
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20 Visualizing path-morphing as movie-morphing

Use the abbreviations G ≡ SO+(3, 0) and Σ ≡ Spin+(3, 0) again, like in section 19.
A path in G is a continuous sequence of rotations in 3d euclidean space, so the

path may be depicted as a movie – a continuous sequence of object-orientations
obtained by applying each rotation to the object’s initial orientation. The act of
continuously morphing the path may then be depicted as the act of continuously
morphing the original movie to a different movie.

For an example, let ek with k ∈ {1, 2, 3} be a set of mutually orthogonal unit
vectors, and consider rotations of the form (6) with

R = r(0, φ)r(θ, φ) (11)

r(θ, φ) ≡ e1 cosφ+ (e2 cos θ + e3 sin θ) sinφ.

For any given value of φ, the vector r(θ, φ) traces out a closed path on the unit
sphere as θ goes from 0 to 2π, so R also traces out a closed path in Σ. If φ = 0,
then this closed path is a single point, corresponding to just the identity rotation
in 3d euclidean space. This movie shows a motionless object. If φ = π/2, then
the closed path corresponds to a continuous sequence of rotations in 3d euclidean
space, all in the e2-e3 plane – all about the e1 axis in colloquial terms – so this
movie shows an object rotating about a single axis from 0 to 4π.62 As φ morphs
from 0 to π/2, the first movie (a motionless object) morphs into the second movie
(an object executing a 4π roll about a single axis).

Figure 1 illustrates the reflection-vectors for a series of these closed paths, and
figure 2 illustrates the corresponding series of rotating-object movies. This shows
how a motionless-object movie can be continuously morphed into a 4π-roll movie,
respecting the constraint that the final orientation equal to the initial orientation in
each movie (so the corresponding paths in G are closed). In contrast, a motionless-
object movie cannot be continuously morphed into a 2π-roll movie without violating
that constraint: in G, the 2π-roll path is not homotopic to a point.

62Recall section 9: as the angle between the two reflections goes from 0 to 2π, the resulting rotation angle goes
from 0 to 4π.

25



cphysics.org article 08264 2024-03-04

(a)

1
2

3
4

(b)

1

2

3

4

(c)

1

2

3

4

(d)

1

2

3

4

(e)

1

2

3

4

(f)

1

Figure 1 – Six of the closed paths in this series that was described in section 20, namely
φ = nπ/12 with n ∈ {0, 1, 2, 3, 4, 5} (pictures a,b,c,d,e,f). In these pictures, e1 points to the
left, e2 points down, and e3 points out of the page. The gray circle traces out the continuous
closed path, and the four spokes depict four representative unit vectors r(φ, θ) on that path,
namely those with θ ∈ {0, π/2, π, 3π/2}. The plane spanned by the two reflection-vectors
r(0, φ) and r(θ, φ) is the plane of the rotation defined by using equation (11) in equation (6).
The case θ = 0 gives the identity rotation. Figure 2 shows the corresponding series of rotating-
object movies.
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Figure 2 – The movies corresponding to the closed paths in figure 1. In each of the six movies,
the reference object starts with the orientation labelled 1 and passes through a continuous series
of orientations, represented in these pictures by the snapshots labelled 1,2,3,4, finally returning
to the initial orientation 1. In each movie, the orientation labelled k (with k ∈ {1, 2, 3, 4}) is
obtained from the reference orientation (labelled 1) by first reflecting along the vector labelled k
in figure 1 and then reflecting along the vector labelled 1 in figure 1, as prescribed in equations
(6) and (11). When comparing this figure to figure 1, remember the angle-doubling phenomenon
that was highlighted in section 9.
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21 Intuition for (p, q) = (p, 0) with p ≥ 3

When p ≥ 3, the group G ≡ SO+(p, 0) is not simply connected, but its double
cover Σ ≡ Spin+(p, 0) is simply connected.63

Section 19 already explained this for p = 3. The intuition for p > 3 is the same,
except that now the unit sphere is Sp−1, the (p − 1)-dimensional “surface” of a
p-dimensional ball. As long as p ≥ 3, any closed path on Sp−1 can be continuously
morphed to a point, so Σ is simply connected.

The connected isometry group G is still not simply connected: a path in Σ that
starts at R = 1 and ends at R = −1 is closed in G but not in Σ, so it cannot be
continuously morphed to a point without breaking it in G.

63Remember footnote 60 in section 18.
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22 Intuition for (p, q) = (1, 1)

In this case, the connected isometry group G ≡ SO+(1, 1) is simply connected,
but its double cover Σ ≡ Spin+(1, 1) is not even connected.64 Section 16 already
showed that Σ is not connected.

To show that G is simply connected, let e1 and e2 be mutually orthogonal
vectors with e2

1 = 1 and e2
2 = −1. Every R ∈ Σ has the form R = x + ye1e2 with

real coefficients satisfying x2 − y2 = 1 so that RR̃ = 1. The components of R with
x > 0 and x < 0 are not connected to each other, but the sign of x makes no
difference in G (equation (6)), so for G we only need to consider the case x > 0.
The pair of conditions x2−y2 = 1 and x > 0 describes a single connected hyperbola
in the x-y plane. The hyperbola is topologically equivalent to an infinite line, which
is the prototypical example of a simply connected manifold. This shows that G is
simply connected.

64Remember footnote 60 in section 18.
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23 Intuition for (p, q) = (2, 1)

The groups G ≡ SO+(2, 1) and Σ ≡ Spin+(2, 1) are not simply connected.
This can be understood intuitively using a generalization of the intuition that

was used in section 18. Let e1, e2, e3 be mutually orthogonal vectors normalized
so that e2

1 = e2
2 = 1 and e2

3 = −1. Consider a path in R of the form R = e1r(λ)
with r2(λ) = 1. For all λ, the vectors r(λ) are restricted topologically to the
two-dimensional surface of a hyperboloid, because they must have the form

xe1 + ye2 + ze3

with x2 + y2 − z2 = 1. This hyperboloid is topologically equivalent to (the surface
of) an infinitely long cylinder. A closed path that wraps around the cylinder n
times cannot be continuously morphed to one that wraps around the cylinder a
different number of times. More generally, the first factor e1 can be morphed into
a closed path, but that can’t undo the wrapping of r(λ), so Σ admits infinitely
many different classes of closed paths that cannot be continuously morphed into
each other. This shows that Σ is not simply connected.

The map from Σ to G is two-to-one, defined by ignoring the difference between
R and −R. That’s not enough to make G simply connected, for essentially the
same reason as in section 18.

30



cphysics.org article 08264 2024-03-04

24 Intuition for (p, q) = (p, 1) with p ≥ 3

When p ≥ 3, the group G ≡ SO+(p, 1) is not simply connected, but its double
cover Σ ≡ Spin+(p, 1) is simply connected.

The intuition is essentially the same as in section 21, because, topologically, the
only effect of the extra dimension (the “1” in (p, 1)) is to replace the sphere Sp−1

with the cylinder Sp−1×R. When p ≥ 3, this is simply connected just like Sp−1 is.
This can be used to show that Σ is simply connected, just like in section 21.

In contrast, G is not simply connected, again for the same reason as in section
21: G has closed paths that are not closed in Σ. This occurs when the path’s
endpoints in Σ are on opposite sides of the sphere Sp−1, and the path cannot
be continuously morphed to a point without violating that condition – without
breaking the closed path in G. This shows that G is not simply connected.
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25 Intuition for (p, q) with p and q both ≥ 2

When p and q are both ≥ 2, the groups G ≡ SO+(p, q) and Σ ≡ Spin+(p, q) are
not simply connected. For G, the intuition is just like in section 24. For Σ, the
intuition involves a new phenomenon that does not occur when either p or q is less
than 2. This section describes that new phenomenon.

Let e1, ..., ep be mutually orthogonal vectors with e2
k = 1, let f1, ..., fq be mutually

orthogonal vectors with f2
k = −1, and consider the product

R(θ) = e1r(θ)f1s(θ) (12)

with

r(θ) = e1 cos θ + e2 sin θ

s(θ) = f1 cos θ + f2 sin θ. (13)

The quantity R(θ) belongs to Σ ≡ Spin+(p, q), because each of the first two vectors
in the product (12) has norm 1, and each of the last two has norm −1. Equation
(12) implies R(π) = R(0), so R(θ) traces out a closed path in Σ as θ goes from 0
to π. The remaining task is to show that this closed path cannot be continuously
morphed to a point, which implies that Σ is not simply connected.

Let V+ and V− be the sets of vectors whose norms are positive and negative,
respectively. A vector v in either of these sets may be written as v = x + y, where

• x is a linear combination of the eks,

• y is a linear combination of the fks.

The vectors x and y anticommute with each other, so v belongs to V+ if |x2|−|y2| >
0, and it belongs to V− if |x2| − |y2| < 0. To describe the topology of V+ and V−,
let Mn denote Rn with an n-dimensional ball deleted. Then V+ is topologically
equivalent to Mp × Rq, where the factor Rq is parameterized by the vector y, and
the factor Mp is parameterized by x, which is a linear combination of the eks
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subject to the constraint |x2| > |y2|. Similarly, V− is topologically equivalent to
Rp ×M q.

Topologically, when the quantity R(θ) defined above goes from θ = 0 to θ = π,
the factor r(θ) goes from one side of the deleted p-dimensional ball in Mp × Rq

to the opposite side of that deleted ball, and the factor s(θ) goes from one side
of the deleted q-dimensional ball in Rp ×M q to the opposite of that deleted ball.
The corresponding closed path in Σ cannot be continuously morphed to a point
without violating those conditions, which would correspond to breaking the path
in Σ. This shows that Σ is not simply connected.

This phenomenon requires that p and q are both ≥ 2. When p or q is ≤ 1,
products R of the form described at the beginning of this section don’t exist.
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26 Other topological properties

This article focused on just two basic topological properties: whether the given
Lie group is connected, and whether it is also simply connected. We can get more
information about the topology of a Lie group M (using the letter M for manifold)
by determining the fundamental group π1(M), as illustrated in section 5. Saying
that the manifold M is simply connected means that the fundamental group π1(M)
is trivial, but when π1(M) is not trivial, it can be non-trivial in different ways, so
this gives us more information about the topology of manifolds that are not simply
connected.

We can get even more information about the topology of M by considering the
higher homotopy groups π2(M), π3(M), and so on. Roughly,65 πk(M) is defined
by considering equivalence classes of embeddings of the sphere Sk in M , just like
the fundamental group π1(M) is defined by considering equivalence classes of em-
beddings of the circle S1 in M – which are closed paths in M . A manifold M
may have some non-trivial higher homotopy groups πk(M) even if its fundamental
group π1(M) is trivial. As an example, consider Σ ≡ Spin+(p, 0) with p ≥ 3. Then
Σ simply connected (π1(Σ) is trivial), and the second homotopy group π2(Σ) also
turns out to be trivial,66 but the third homotopy group π3(Σ) is nontrivial.67

65Section 4.5 in Nakahara (1990) gives a precise definition.
66π2(M) is trivial for every connected Lie group M (Santos (2018), theorem 3.1, and https://mathoverflow.

net/questions/8957/).
67Borcherds (2012), section 15.5
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