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Phase Structure of Models of Scalar
Quantum Fields

Randy S

Abstract In quantum field theory, models are often defined with one or
more continuously adjustable parameters. Different regions of parameter-space in
which the vacuum state has qualitatively different properties are called different
phases, and the thresholds between those regions are called phase transitions.
For many of the models that we know how to construct nonperturbatively, the
only known nonperturbative constructions involve pretending that spacetime is
discrete. Understanding the phase structure of models defined in discrete space-
time can inform the search for interesting continuum limits. This article reviews
the phase structure of some simple models of scalar quantum fields, emphasizing
how it depends both on the type of internal symmetry and on the number of
dimensions of spacetime.
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1 Motive

Roughly, a phase transition is a qualitative change in a system’s properties as some
parameter is varied. The phase transitions of interest in this article are qualitative
changes in the vacuum state induced by varying parameters in the action.

The phase structure of a quantum field model can be important for a few
reasons:

• If the model is defined by treating space or spacetime as a lattice,1 then
knowing how to tune the model’s parameters so that the correlation length
becomes infinite in units of the discretization scale is a prerequisite for the
existence of an interesting continuum limit.

• We must be careful that results obtained with some finite lattice spacing are
not separated from the continuum limit by some other phase transition across
which the results change qualitatively.2 A famous example of this relates to
the question of whether quantum chromodynamics predicts the confinement
of quarks. That question has been answered in the limit of strong coupling
when spacetime is treated as a lattice, but this doesn’t prove that quarks
remain confined when the continuum limit is taken, because a phase transition
might occur along the way.3,4

• It can be used to test intuition. Intuition can be valuable, but it isn’t always
reliable, so it should be tested in a variety of ways. Information about a
model’s phase structure – and how the phase structure depends on basic
inputs like the number of dimensions of spacetime – can provide some of
those tests.

1Articles 52890 and 63548
2Svetitsky (2013) says, “No lattice calculation... can proceed without understanding the phase diagram...”
3Creutz (1980), section I
4Numerical computations overwhelmingly indicate that such phase transitions are absent and that quarks really

are confined in the continuum limit of QCD, as they are in nature. The asymptotic freedom phenomenon (section
13) is also consistent with this.
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2 Sources of information

This article summarizes a variety of published results from a variety of sources.
Many of these results were derived using approximations,5 but all of them have
passed enough consistency checks to be convincing. Aside from that generic dis-
claimer, the most important thing to understand about these results is that many
of them have been transferred. The next paragraph explains what I mean by this.

The euclidean path integral formulation for vacuum expectation values of a
model of scalar quantum fields in d-dimensional spacetime has the same mathe-
matical form6 as statistical expectation values over a classical Boltzmann distribu-
tion in d-dimensional space. The phase structure is the same either way, with the
understanding that vacuum (zero-temperature) expectation values in the quantum
case correspond to thermal expectation values in the classical case. Using this
correspondence, results about the phase structure of classical models can often be
transferred to the corresponding quantum models. The language and notation may
differ, but the math is the same. The language in this article is focused on quantum
models, even though many of the cited sources are written with the classical case
in mind. The results are transferrable.7

5The details of the approximations can be found by studying the cited sources.
6Article 63548
7The quantum-classical correspondence reviewed in this paragraph is not the only type of quantum-classical

correspondence. Article 51033 includes a long section about this. Of course, we cannot necessarily transfer results
based on those other types of quantum-classical correspondence. Remember that in the type of correspondence used
in this article, the number of spacetime dimensions in the quantum model is equal to the number of space dimensions
in the corresponding classical model.
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3 The continuum and infinite-volume limits

The quantum models in this article may be constructed using the path integral
formulation (section 4) by treating spacetime as a lattice. One of the motivations
for studying the phase structure of these models is to inform the search for interest-
ing continuous-spacetime limits, but the quoted results are not restricted to those
limits.

In contrast, the limit of infinite volume (infinite number of lattice sites) is
understood to be in effect throughout this article. That’s important because some
types of phases and phase transitions occur only in infinite volume, at least as far
as the model itself can tell.8

8Real systems can exhibit phenomena like spontaneous symmetry breaking in finite volume (article 81040), for the
same reason that real systems can exhibit the phenomena we call measurement (article 03431). Another perspective
is described in van de Ven et al (2020).
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4 Wick rotation and phase structure

Consider a model involving a scalar field in d-dimensional spacetime, which will
be treated as a lattice, and let I be some time-ordered product of field operators
and their expectation values.9 This article focuses on models in which the vacuum
expectation value of the operator I can be reconstructed from the euclidean path
integral10

〈I〉 ≡
∫

[dφ] e−S[φ]I[φ]∫
[dφ] e−S[φ]

(1)

using Wick rotation.11 The insertion I[φ] (which represents the operator I) and the
euclidean action S[φ] are both expressed in terms of the scalar field variables φ(x)
and their discretized derivatives with respect to x. In this article the euclidean
action S[φ] will just be called the action.

9Mnemonic: I stands for insertion or integrand, because of the way this operator is represented in the path
integral (1).

10Article 63548
11If the result of evaluating the path integral is expressed as a function of the time-step dt, then the vacuum

expectation value of I is recovered by replacing every occurrence of dt with i dt (if the fields are all scalar fields).
The name Wick rotation refers to writing this as eiθdt and then “rotating” θ continuously from 0 to π/2.
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5 The φ4 model: phase structure

The euclidean action of the φ4 model is12,13

S = εd
∑
{x,y}

1

2

(
φ(y)− φ(x)

ε

)2

+ εd
∑
x

(
µ
φ2(x)

2
+ g

φ4(x)

4!

)
+ constant, (2)

where the sum over {x, y} means the sum over nearest-neighbor pairs of points in
spacetime, which is treated as a lattice. The action (2) and the measure [dφ] in the
path integral are both invariant under the transformation φ(x)→ −φ(x), so this is
a symmetry.14 The φ4 model with g > 0 can be in either of two phases, depending
on the values of the coefficients in (2) and the value of d:

• In the symmetric phase, the vacuum state is unique.

• In the SSB phase,15 two choices exist for the vacuum state, related to each
other by the discrete symmetry φ → −φ. In other words, the φ → −φ
symmetry is spontaneously broken. This phase exists only if d ≥ 2.

At the phase transition, the correlation length becomes infinite in units of the lattice
spacing,16 satisfying a necessary (but not sufficient) condition for the existence of
an interesting continuum limit. For any given value of the coefficient g in (2), the
value of µ that makes the correlation length infinite is called the critical point,
denoted µc. The function µc(g) defines a line in the g-µ plane called the critical
line. Section 6 uses some intuition to deduce that µc becomes increasingly negative
as g increases, and sections 7 and 9 show some results from computer calculations
that confirm this intuition.

12Article 63548
13For the rest of this article, constants terms in the action will be omitted even if their values change from one

equation to the next.
14It’s an internal symmetry, because it doesn’t mix the field variables at different points with each other.
15SSB stands for spontaneous symmetry beaking.
16in many models with an SSB phase, the correlation length becomes infinite at the phase transition, but exceptions

do exist. In the q-state Potts model with q ≥ 5 and d = 2, the correlation length remains finite at the transition to
the SSB phase (Creswick and Kim (1997)).
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6 The φ4 model: correlation length

Consider the φ4 model with g = 0 and µ = m2 > 0. Then the correlation length is
inversely proportional to the parameter m. To understand intuitively why this is
true, start with the euclidean action:

S = εd
∑
{x,y}

1

2

(
φ(y)− φ(x)

ε

)2

+ εd
∑
x

m2φ
2(x)

2
. (3)

Rescale φ→ φ/
√
m to get

S = εd
∑
{x,y}

1

2

(
φ(y)− φ(x)

mε

)2

+ εd
∑
x

φ2(x)

2
. (4)

This shows that correlations between different lattice sites are suppressed as m→
∞, so large m means small correlation length. This agrees with the result derived
in article 00980, but the intuition used here also works in cases like this:

S = εd
∑
{x,y}

1

2

(
φ(y)− φ(x)

ε

)2

+ εd
∑
x

+g
φ4(x)

4!
. (5)

The same kind of rescaling argument, now with φ → φ/g1/4, says that larger g
gives smaller correlation length. Finally, consider

S = εd
∑
{x,y}

1

2

(
φ(y)− φ(x)

ε

)2

+ εd
∑
x

(
µ
φ2(x)

2
+ g

φ4(x)

4!

)
. (6)

Now we have two parameters, µ and g. Intuitively, if we make the correlation
length smaller by increasing g, then we should be able to make it larger again by
decreasing µ. If µ is initially zero, then keeping the correlation length large must
require making µ more negative as g increases. Numerical studies show that this
intuition is correct. Some results are summarized in sections 7 and 9.
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7 The φ4 model: critical line

If d ≥ 2, then for any given value of g > 0, a finite critical value µc < 0 exists for
which the model with action (2) has a phase transition at µ = µc. The case µ < µc
gives the SSB phase, and µ > µc gives the symmetric phase. The correlation length
is finite for all µ except µ = µc < 0, where it becomes infinite. This table shows
the critical value µc for a few representative values of d and g:17

d g µc
3 0 0

46 −9.2
∞ −∞

4 0 0
150 −8
∞ −∞

This is consistent with the intuition in section 6.
When g = 0, the would-be SSB phase doesn’t exist, because the path integral

is undefined when µ < 0 unless g > 0.18

Section 8 introduces a different way of writing the action, one that clarifies what
happens when g →∞.

17The computer results are shown to two significant digits. This table is inferred from the one in section 9 using
equations (7). Article 10142 shows a more complete table for the case d = 4.

18When µ < 0 and g = 0, the factor e−S in the integrand of the path integral does not have a finite upper bound.
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8 Another way to write the action

To reduce clutter, use units in which ε = 1 from now on. Define λ and κ by

g =
6λ

κ2
µ =

1− 2λ

κ
− 2d, (7)

and rescale the field φ→
√

2κφ. Then the action (2) may be written as

S = −2κ
∑
{x,y}

φ(x)φ(y) +
∑
x

(
φ2(x) + λ

(
φ2(x)− 1

)2
)
. (8)

The coefficient κ is called the hopping parameter, because the product φ(x)φ(y)
is what allows effects to propagate (“hop”) through the lattice.

The original action (2) has two adjustable parameters, µ and g. The new action
(8) still has two adjustable parameters, κ and λ, but now a simplification occurs
in the limit λ→∞: in that limit, the factor e−S in the integrand of the euclidean
path integral goes to zero unless φ(x) = ±1 for all x, so the action can be reduced
to

Sλ→∞ = −2κ
∑
{x,y}

φ(x)φ(y) with φ(x) = ±1.

This is called the Ising model.
When the model’s phase structure is described using the parameters in the

original action (2), the critical value of µ goes to −∞ as g → ∞. Describing the
model’s phase structure in terms of κ and λ gives a more complete picture, because
the value of κ at which the phase transition occurs – the critical value κc – remains
finite as λ → ∞. Section 9 will describe the critical line again, using κ and λ
instead of µ and g.
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9 The critical line again

This table shows the critical value of 2κ for models with the action 8, for a few
representative values of d and λ:

d λ 2κc Sources
3 1.1 0.38 Hasenbusch (1999)

∞ 0.22 Creutz (1983)

4 0.49 0.28 Lüscher and Weisz (1987)

∞ 0.15 Lüscher and Weisz (1987), Lüscher (1987)

→∞ ∞ tanh−1 1
2d−1 Itzykson and Drouffe (1989)

As λ→ 0, the critical value approaches κc → 1/d, but the SSB phase doesn’t exist
when λ = 0 because the model is undefined for κ > 1/d when λ = 0.19 The value
of κc as a function of λ/(1 + λ) is shown here for the case d = 4:20

λ/(1 + λ)

κ

0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

1

For values of κ below the line, the model is in the symmetric phase. For values of
κ above the line, it’s in the SSB phase (for λ > 0).

19Footnote 18 in section 7
20The dots are data-points from table 1 in Lüscher and Weisz (1987). The gray line between the dots is näıve

linear interpolation. The kink at the second-to-last dot is an artifact of this näıve interpolation.
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10 The O(N) models

The family of models described in the previous sections has a natural generalization
in which the scalar field has N components:

φ(x) =
(
φ1(x), ..., φN(x)

)
.

As in section 8, the euclidean action is

S = −2κ
∑
{x,y}

φ(x) · φ(y) +
∑
x

(
φ2(x) + λ

(
φ2(x)− 1

)2
)

(9)

with

φ(x) · φ(y) ≡
N∑
n=1

φn(x)φn(y) φ2(x) ≡ φ(x) · φ(x).

The action is invariant under x-independent rotations in the N -dimensional space
whose coordinates are the N components of the scalar field. These are called O(N)
models, named after this O(N) symmetry. When N = 1, this reduces to action
(8) for the φ4 model.

In the limit λ → ∞, the factor e−S in the integrand of the euclidean path
integral goes to zero unless the field satisfies the constraint φ2(x) = 1 for all x, so
the action in the path integral can be reduced to21

S = −2κ
∑
{x,y}

φ(x) · φ(y) with φ2(x) = 1. (10)

This is an example of a nonlinear sigma model.22 The next few sections will
review the phase structure of these models.

21Article 51033 constructed these models directly, instead of starting with finite λ.
22The word nonlinear is in the name because of the nonlinear constraint φ2(x) = 1. Models with unconstrained

scalar field variables, like (9), are sometimes called linear sigma models, even though the action is a nonlinear
function of the field variables.
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11 The O(N) models: phase structure

The family of models with action (10) has one continuously adjustable parameter
κ, and it has two discrete parameters: the number d of spacetime dimensions, and
the number N of components of the scalar field. This table shows how the number
of distinct phases depends on d and N 23 when κ > 0:24

d = 1 d = 2 d ≥ 3
N = 1 1 2 2
N = 2 1 2 2
N ≥ 3 1 1 2

In cases with more than one phase, the value of κ controls which phase the model
is in.

When d ≥ 3, the model always has two phases: for each N , a critical value
κc > 0 exists for which the model is in the symmetric phase for κ < κc and in the
SSB phase for κ > κc. When N ≥ 2, the O(N) symmetry is continuous, and a
continuum of choices exists for the vacuum state in the SSB phase. This leads to
massless particles called Goldstone bosons,25 a phenomenon that does not occur
when the symmetry is discrete (N = 1).

For d = 2, a compact continuous group of symmetries, like O(N) with N ≥ 2,
cannot be spontaneously broken.26 Section 13 will summarize the nature of the
phases in these cases.

23For N ≥ 3 with d = 2: Zinn-Justin (1998). For N ≥ 3 with d ≥ 3: Roomany and Wyld (1980) and page 678 in
Zinn-Justin (1996). For N = 2: section 13. For N = 1: section 5.

24For any d, we can use a spacetime lattice with this property: its points can be assigned to two subsets such that
every nearest-neighbor pair has exactly one point from each subset. In that case, only κ ≥ 0 needs to be considered,
because changing the sign of κ is equivalent to changing the sign of φ(x) for points x in one of those two subsets. If
a term proportional

∑
x φ(x) is added to the action, then κ > 0 and κ < 0 are no longer equivalent, and new phases

can occur when κ < 0. Section 18 describes one example.
25Derivations are given in chapter 19 in Weinberg (1996), page 388 in Peskin and Schroeder (1995), and section

5.3 in Cheng and Li (1984). Chapter 19 in Weinberg (1996) discusses some special properties of Goldstone boson
interactions.

26This is the Mermin-Wagner theorem (article 37301).
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12 The O(N) models: critical point

For models with the O(N)-symmetric action (10), this table shows approximate
values of 2κc (the value of 2κ at which the phase transition occurs) in some repre-
sentative cases:27

d = 1 d = 2 d = 3 d = 4 d→∞
N = 1 ∞ 0.44 0.22 0.15 tanh−1 1

2d−1

N = 2 ∞ 1.1 0.45 0.3
N = 3 ∞ ∞ 0.69
N = 4 ∞ ∞ 0.94 0.61
N = 5 ∞ ∞
N = 6 ∞ ∞ 1.4
N = 7 ∞ ∞
N = 8 ∞ ∞ 1.9
N = 9 ∞ ∞
N = 10 ∞ ∞ 2.4
N = 11 ∞ ∞
N = 12 ∞ ∞ 2.9
N →∞ ∞ finite×N N/2d

Notice the trend: when d decreases or when N increases, spontaneous symmetry
breaking becomes “more difficult,” in the sense that it requires a larger value of κ.
When d is too small (for a given N) or when N is too large (for a given d), SSB
becomes so difficult that it cannot occur at all (κc =∞).

27For N = 1: page 95 in Creutz (1983) and page 123 in Itzykson and Drouffe (1989). For d = 3: Butera and Comi
(1997). For N =∞ (the Stanley model): see pages 14,15, and 143 in Itzykson and Drouffe (1989). For d = N = 2:
page 8 in Butera and Comi (1996) or section 3 in Caselle et al (2019). (The latter source gives the value of 1/κc.)
For d = 4 with N = 2: Bock et al (1999). For d = N = 4: Nishimura (1992).

14
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13 The phase structure for d = 2

When d = 2, the phase structure of a model with action (10) depends on the value
of N :

• If N = 1,28 the model has two phases: a symmetric phase for small κ, and
an SSB phase for large κ, separated by a finite critical value κc > 0, just like
when d ≥ 3.

• If N = 2, the model has two distinct phases, even though it doesn’t have
an SSB phase. The phase transition in this case is called the Berezinskii-
Kosterlitz-Thouless (BKT) transition.29 The correlation length is finite
in the small-κ phase and is infinite in the large-κ phase.30

• If N ≥ 3, the critical value of κ is infinite: the correlation length diverges
(in units of the lattice spacing) as κ → ∞. The model has only one phase,
and it has a property called asymptotic freedom,31 which means (roughly)
that the interaction strength effectively approaches zero at asymptotically
high energies even though it nonzero at finite energies. Asymptotic freedom
is interesting partly because it also occurs in quantum chromodynamics when
d = 4, a discovery that led to a Nobel Prize32 because it explains why quarks
behave almost like free particles at short enough distances even though they
interact strongly with each other at larger distances.

28Article 81040 derives the phase structure of this model in detail, using a hamiltonian formulation.
29It has also often been called the Kosterlitz-Thouless (KT) transition. Chapter 4 in Le Bellac (1991) gives

some intuition about the nature and reason for this phase transition.
30Caselle et al (2019), section 3
31Section 13.3 in Peskin and Schroeder (1995) reviews two different derivations of this. Patrascioiu and Seiler

(1999) encourage thinking critically about the evidence on which this conclusion is based – a healthy exercise even
if it doesn’t end up changing the conclusion.

32https://www.nobelprize.org/prizes/physics/2004/summary/
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14 Universality near the phase transition

Some details of a model’s construction that affect the model’s predictions when
spacetime is treated as a lattice can stop affecting its predictions in the continuum
limit. This is called universality. Taking a continuum limit requires tuning a
model’s parameters so that its correlation length becomes infinite in units of the
lattice spacing (though it may still be kept finite in physically relevant units), so
universality can also be expressed like this: when the correlation length diverges
(in units of the lattice spacing), as it often does at transitions between different
phases, certain quantities no longer depend on the model’s microscopic details.33

Examples of such universal quantities include the critical exponents β, ν, and η
defined by34

(vacuum expectation value of the field) ∼ |κ− κc|β (11)

(correlation length) ∼ |κ− κc|−ν (12)

(two-point correlation function at κ = κc) ∼
1

(distance)d−2+η
. (13)

The values of these critical exponents in a few models are listed in this table:35

d N β ν η Sources
2 1 1/8 1 1/4 p 398 in Huang (1987)

3 1 0.32 0.63 0.03 p 318 in Itzykson and Drouffe (1989), p 636 in Zinn-Justin (1996), p 398 in Huang (1987)

2 0.35 0.67 0.03 p 318 in Itzykson and Drouffe (1989), p 636 in Zinn-Justin (1996)

3 0.36 0.71 0.03 p 318 in Itzykson and Drouffe (1989), p 636 in Zinn-Justin (1996), p 398 in Huang (1987)

∞ 1/2 1 0 pp 130, 281 in Itzykson and Drouffe (1989)

4 any 1/2 1/2 0 p 236 in Amit (1997)

∞ any 1/2 1/2 0 p 130 in Itzykson and Drouffe (1989)

33In contrast, the value of κc is only meaningful in the context of a specific lattice model. This article includes
tables of κc because the way it depends on discrete parameters like d and N can be used to check intuition.

34Huang (1987)
35The values for d = 3 with finite N are approximate. The others are exact.
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15 Zn models

Article 51033 constructed a family of models called Zn models, one for each integer
n ≥ 2. The O(2) model can be viewed as a limit of the Zn model as n → ∞.
Conversely, the Zn model can be viewed as a discretized version of the O(2) model
in which the allowed values of the field variables correspond to n equally-spaced
points around the unit circle, like the tick-marks on a clock. For this reasons, Zn
models are also called clock models.

For d ≥ 3, the phase structure is qualitatively the same for n → ∞ as it is for
n = 2: the O(2) and Z2 models both have two phases, a symmetric phase and an
SSB phase,36 so we would naturally expect this same phase structure for every n.

In contrast, for d = 2, the Z2 model still has both a symmetric phase and an
SSB phase, but the O(2) model has two distinct symmetric phases instead.37 This
raises a question: when d = 2, as n increases, how does the phase structure of the
Zn model turn into that of the O(2) = Z∞ model? The answer is interesting:38

• for 5 ≤ n < ∞, the Zn model has three phases: a symmetric phase for

κ < κ
(1)
c , a phase with infinite correlation length for intermediate values

κ
(1)
c < κ < κ

(2)
c , and an SSB phase for large κ > κ

(2)
c ,

• For 2 ≤ n ≤ 4, the Zn model has only two phases, symmetric and SSB,

because κ
(1)
c = κ

(2)
c .

• As n approaches ∞, the value of κ
(2)
c diverges, so the SSB phase disappears

in the limit n → ∞ (the O(2) model). The remaining phases are both
symmetric, one with finite correlation length and one with infinite correlation
length, as described in section 13.

Section 16 shows the approximate values of κ
(1)
c and κ

(2)
c .

36Section 11
37Section 13
38Ortiz et al (2012), section 4, figure 4; Alfonso (1985), section III.2; and Hostetler et al (2021), section IV-E,

which includes a long list of references.
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16 Zn models: critical points(s) for d = 2

The action for the Zn model may be written

S = −2κ
∑
{x,y}

cos
(
θ(x)− θ(y)

)
,

where θ(x) is restricted to integer multiples of 2π/n. This table shows approximate
critical points for the quantum Zn models in two-dimensional spacetime (or classical
Zn models in two-dimensional space) with this action, in terms of β ≡ 2κ:39,40

n β
(1)
c β

(2)
c

2 0.44 = β
(1)
c

3 0.67 = β
(1)
c

4 0.88 = β
(1)
c

5 1.05 1.10
6 1.11 1.43
7 1.11 1.88
8 1.12 2.35
...

12 1.12 5.06
...

17 1.11 10.13
...

→∞ 1.12 ∝ n2

The significance of the β
(2)
c column was highlighted in section 15.

39For n = 2: footnote 27 in section 12, because this case is the same as the O(N) model with N = 1. For
n = 2, 3, 4: Li et al (2021), figure S5 (and table S1 cites more references for n = 5, 6, 7, 8). For n = 5: Borisenko et
al (2011a), between equations (3.4) and (3.5). For n = 6, 8, 12: Tomita and Okabe (2002), table 1 (with 2κ = 1/T ).
For n = 7, 17: Borisenko et al (2011b), section 2. For n→∞: Borisenko et al (2011b), section 3.

40The notation β is often used when thinking of the euclidean path integral as the statistical sum over a classical
Boltzmann distribution (section 2), in which case β is the inverse temperature.
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17 The icosahedron model

In the O(3) model, the values of the field variables are restricted to the sphere S2

defined by φ2
1(x) + φ2

2(x) + φ2
3(x) = 1. The icosahedron model is like the O(3)

model, but the values of the field variables are further restricted to the 12 vertices
of a regular icosahedron, a discrete subset of S2. The resulting symmetry group is
the largest subgroup of O(3) that is not also a subgroup of O(2).41

When d = 3, the icosahedron model has two phases separated by a critical
value κc.

42 This phase structure is similar to that of the O(3) model when d = 3.43

Hasenbusch (2020) presents evidence44 that the icosahedron and O(3) models are
in the same universality class45 (they have the same continuous-spacetime limits)
when d = 3, which implies that the symmetry of the icosahedron model is enhanced
to O(3) symmetry in the continuous-spacetime limit.46

When d = 2, the icosahedron model again has two phases,47 even though the
O(3) model has only one phase, namely the asymptotically-free phase.43,48

41Caracciolo et al (2001), appendix A
42Section IV in Hasenbusch (2020) gives the value of κc.
43Section 11
44The numerical analyses reported in Hasenbusch (2020) collectively used more than 130 years of CPU time.
45Article 10142 introduces the concept of universality.
46The continuous-spacetime limit involves only arbitrarily low resolution compared to the lattice spacing, which

implies an averaging effect. Averages of sufficiently large numbers of discrete variables can act effectively like
continuous variables, so the reported symmetry enhancement at the critical point doesn’t contradict the fact that
the field variables at each lattice site are restricted to a discrete subset.

47Hasenbusch (2020), section II-B
48...at least this is the consensus among most physicists, based on the available evidence. Numerical results using

spacetime lattices of currently-attainable sizes seem to indicate that the continuum limit of the icosahedron model,
when approached from the symmetric phase, is the same as the O(3) model even when d = 2. Patrascioiu and Seiler
(2000) suggested that the d = 2 O(3) model might not be asymptotically free (contrary to conventional wisdom),
and Hasenfratz and Niedermayer (2001a,b) suggested the opposite – that the d = 2 icosohedron model might have a
continuum limit with asymptotic freedom. Based on a perturbative analysis, Caracciolo et al (2001) suggested that
the two models may not share the same continuum limt, even though detecting the difference may require considering
much larger spacetime lattices.
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18 The Z2 model with explicit symmetry breaking

The Z2 model is named after its symmetry φ→ −φ, which is broken spontaneously
when κ > κc. The previous sections considered only nonnegative values of κ, be-
cause negative values don’t give anything new: changing the sign of κ is equivalent
to changing the sign of exactly one of the variables φ(x) in every nearest-neighbor
pair {x, y}.49

This section considers the effect of including an explicit symmetry-breaking
term, so that the action is

S = −2κ
∑
x,y

φ(x)φ(y)− J
∑
x

φ(x) with φ(x) = ±1. (14)

When J 6= 0, the transformation φ → −φ is no longer a symmetry of the action,
and the phase structure with κ < 0 is different than the phase structure with κ > 0.

The phase diagram when κ > 0 is sketched here:50

J

1/κ
0

1/κc

2

Let v denote the vacuum expectation value of the operator corresponding to φ(x).
When J 6= 0, v is nonzero and has the same sign as J . For a fixed value of

49This is possible when a particular type of spacetime lattice is used (footnote 24 in section 11), namely the
d-dimensional version of a square/cubic/hypercubic lattice.

50This is figure 2.4b in Landau and Binder (2015). In that source, the horizontal axis is labelled T , because that
source interprets the quantity (14) as the hamiltonian of the classical Ising model in 2-dimensional space (instead
of the euclidean action of the quantum Ising model in 2-dimensional spacetime), in which case T ∝ 1/κ is the
temperature.
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1/κ < 1/κc, v approaches a nonzero limit as J → 0, so it jumps discontinuously
(because its sign changes) when the thick line is crossed. We usually call this a
phase transition, even though each phase can be reached from the other, without
any discontinuous change in properties, by passing around the thick line instead
of across it.51 This is possible because the thick line, across which discontinuous
changes occur, terminates at a critical point at a finite value of 1/κ.

The case κ < 0 is sometimes called the antiferromagnetic Ising model. When
J = 0, the factor e−S in the integrand of the path integral favors configurations in
which neighboring variables φ(x) and φ(y) have the same sign if κ > 0, or opposite
signs if κ < 0. The name antiferromagnetic for the κ < 0 case refers to the fact
that it favors configurations in which nearest neighbors have opposite signs. The
phase diagram when κ < 0 is sketched here:52

AM
PM

J

−1/κ
0

3

Two different phases are indicated: the antiferromagnetic (AM) phase, and the
paramagnetic (PM) phase. When J = 0, replacing κ → −κ exchanges the PM
(κ < 0) and symmetric (κ > 0) phases, and it exchanges the AM (κ < 0) and SSB
(κ > 0) phases.53 The value of κ at which the PM-AM transition occurs is the
negative of the value of κ at which the symmetric-SSB transition occurs.

51This is similar to the relationship between the liquid and vapor phases of water: each one can be reached from
the other without any discontinuous change in properties (without boiling or condensing) by following a suitable
path in the pressure-temperature plane (article 73054).

52Landau and Binder (2015), figure 2.4c
53The paragraph after equation (2.18) in Bock et al (1999) highlights this same pattern in the O(N) model with

N = 2 and d = 4.
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19 Phase structure of principal chiral models

Nonlinear sigma models like the ones considered in section 10 are sometimes called
chiral54 models because of their use as low-energy effective models of Goldstone
bosons associated with spontaneously broken chiral symmetries.55 Article 51033
constructed a special family of nonlinear sigma models called principal chiral
models, in which the target space (the space of allowed values of the field variables)
is a Lie group G.

According to Cherman et al (2014), the principal chiral model with with d = 2
and G = SU(N) is asymptotically free,56 like the models in section 13 with N ≥ 3.

The O(2) model, whose phase structure was reviewed in sections 11 as a function
of d, is a principal chiral model with G = SO(2).57

I have not found any good information about the phase structure of the simplest
principal chiral models when spacetime has d ≥ 3 dimensions and G is nonabelian.58

What I have seen in the literature is a bogus argument that these models must be
in the SSB phase.59 The key step in that bogus argument goes like this: the
fact that the values of the field variables are constrained to be nonzero implies
that the vacuum expectation value of the corresponding operators must also be
nonzero. Maybe authors who use this argument have additional conditions in mind
that would make the conclusion conditionally valid, but without those conditions,
the argument is bogus. This article reviewed several counterexamples.60 Simple
intuition can be valuable, but beware of intuition that doesn’t pass simple checks.

54Example: Zamolodchikov and Zamolodchikov (1979)
55Tong (2018), section 5.2
56Kazakov et al (2020) cites more references about principal chiral models with d = 2 and G ∈ {SU(N), SO(N)}.
57For most N , the O(N) models with target space SN−1 are not principal chiral models, because SN−1 is not

homeomorphic to any Lie group unless N ∈ {1, 2, 4} (https://math.stackexchange.com/questions/12453/). The
Lie group homeomorphic to S3 is SU(2), which can also be described as the multiplicative group of versors (unit
quaternions).

58Maybe good information exists that I haven’t found yet. Principal chiral models are not my specialty.
59Such models may indeed have an SSB phase, at least when d ≥ 3, but the bogus reasoning would suggest that

this is their only phase (even when d ≤ 2), which is incorrect.
60One counterexample is the Z2 model (section 15): for any d ≥ 2, the model has a symmetric phase in which the

vacuum expectation value of the field operator is zero, even though the field variables are constrained to be nonzero.
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