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Clifford Algebra,
also called Geometric Algebra

Randy S

Abstract This article introduces Clifford algebra,
an associative algebra generated by vectors. Like the
exterior algebra (article 81674), it includes objects rep-
resenting k-dimensional subspaces for every k. Unlike
the exterior algebra, though, Clifford algebra includes
a scalar product of two vectors, like the one defined by
the metric tensor at a given point in spacetime. For
this reason, Clifford algebra is sometimes also called
geometric algebra.
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1 Tensor algebra

Let V be a d-dimensional1 vector space2 over a given field of scalars, which may
be either the field of real numbers R or the field of complex numbers C. For the
rest of this article, individual vectors (elements of V) will be denoted by boldface
lowercase letters like a and b.

The definition of Clifford algebra starts with the definition of tensor algebra.
Informally: the tensor algebra of V , denoted T (V), is the largest3 associative alge-
bra4 generated by the vectors in V and a multiplicative unit element 1, over the
given field of scalars.

Here’s a more tangible (but still informal) way to define T (V). Given a set
of d linearly independent elements of V , the tensor algebra T (V) is the algebra of
polynomials using those elements as non-commuting independent variables. More
explicitly: given a basis e1, ..., ed of linearly independent elements of V , the tensor
algebra T (V) has a basis consisting of the scalar 1, the vectors ei (d of these), the
products eiej (d2 of these), the products eiejek (d3 of these), and so on. All of
these elements of T (V) are linearly independent (so T (V) is infinite-dimensional),
and every element of T (V) is a linear combination of these. The scalar 1 serves as
the multiplicative unit element. The product is associative, distributive, and linear
– and that’s all.3 In particular, ejek and ekej are not proportional to each other
unless j = k. The product in this algebra is called the tensor product.5

1This article assumes that d is finite.
2The definition of vector space is reviewed in Pinter (1990), chapter 28.
3This loose idea can be made mathematically precise using the language of category theory, where it can be

expressed as a universal property.
4The general definition of associative algebra is reviewed in Jacobson (1985), section 7.1, definition 1. The general

definition doesn’t require having a multiplicative unit, but the tensor algebra does.
5The tensor product of A and B is usually denoted A⊗B, but I’m writing it more concisely as AB.
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2 The definition of Clifford algebra

At any given point in spacetime, we can use the metric to form a Lorentz-invariant
scalar product of two vectors.6 That’s an example of a symmetric bilinear form.
Given a vector space V , a symmetric bilinear form on V assigns a scalar g(a,b)
to each pair of vectors {a,b}, subject to these conditions:7

g(a,b) = g(b, a) g(sa,b) = sg(a,b)

g(a + b, c) = g(a, c) + g(b, c)

for all vectors a,b, c ∈ V and all scalars s.
Given a vector space V and a symmetric bilinear form g(·, ·) on V , the corre-

sponding Clifford algebra Cliff(V , g) is defined just like the tensor algebra T (V)
but with the additional relationship8

v2 = g(v,v) (1)

for all vectors v ∈ V . This means that in any product of vectors where the same
vector v occurs as two consecutive factors, we can replace that pair of factors
with the scalar g(v,v). With this modification, the tensor product becomes the
Clifford product. It still satisfies the generic axioms of associative algebra, but
it also satisfies this extra relationship that cannot be derived from those generic
axioms.9

6Article 48968
7The first condition says that it’s symmetric, and then the other conditions say that it’s linear in each argument

(bilinear).
8In sophisticated terms: the Clifford algebra is the quotient T (V)/I(V, g), where T (V) is the tensor algebra and

I(V, g) ⊂ T (V) is the ideal generated by elements of the form v2 − g(v,v) for all vectors v. The ideal generated
by a subset S ⊂ T (V) is the smallest subalgebra containing S with the property that ab is in the subalgebra
whenever either a or b is in the subalgebra, and the quotient T (V)/I(V, g) means “just like T (V) but with additional
relationships saying that every element of I(V, g) is equivalent to zero.”

9In the tensor algebra, if the vectors a and b are linearly independent, then the products ab and ba are not
proportional to each other. But in the Clifford algebra, they are proportional to each other if g(a,b) = 0 (section 3).
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3 The size of a Clifford algebra

Equation (1) implies10

ab + ba = 2g(a,b) (2)

for all vectors a,b. In particular,

ab = −ba + scalar,

so any product eiejek · · · of basis vectors may be rewritten as a linear combination
of such products that each involve a strictly increasing sequence of indices. Only 2d

strictly increasing sequences exist, because the index-set is {1, 2, ..., d}. This shows
that the Clifford algebra is only 2d-dimensional, even though the tensor algebra
T (V) is infinite-dimensional.

In physics, Clifford algebras are often defined by choosing a basis e1, ..., ed for
V and requiring that the basis vectors satisfy equation (2):11

ejek + ekej = 2g(ej, ek).

This implies equation (1), because every vector v is a linear combination of the
basis vectors ek.

10To deduce this, use a2 = g(a,a) and b2 = g(b,b) and (a + b)2 = g(a + b,a + b).
11When a matrix representation is used, so that each element of the Clifford algebra is represented by a square

matrix using the matrix product as the Clifford product, a matrix representing one of the basis vectors ek is called
a Dirac matrix, especially when g(ej , ek) = ±1 for j = k and g(ej , ek) = 0 otherwise.
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4 Degenerate and nongenenerate Clifford algebras

The simplest example of a symmetric bilinear form is the one with g(v,v) = 0 for
all vectors v.12 This is an extreme example of a degenerate bilinear form. More
generally, a bilinear form g is called degenerate if a nonzero vector a exists for
which g(a,b) = 0 for all vectors b.

If a symmetric bilinear form g is nondegenerate (not degenerate), then V has
a basis e1, ..., ed for which g(ej, ek) is nonzero whenever j = k and zero otherwise.
A Clifford algebra corresponding to a nondegenerate bilinear form will be called a
nondegenerate Clifford algebra.

If the field of scalars is R, then a nondegenerate bilinear form has a signature
(p, q), where p and q are the numbers of positive and negative values of g(ek, ek),
respectively, in a basis for V that makes the matrix Mjk ≡ g(ej, ek) diagonal. The
signature is called euclidean if either p or q is zero, and if both are nonzero then
it’s called lorentzian if either p or q is 1. When the signature is euclidean, g(a,b)
is the familiar dot product a · b. When the signature is lorentzian, g(a,b) is the
Lorentz-invariant scalar product.13

For nondegenerate Clifford algebras, this notation will be used:

• When V is a d-dimensional vector space over C, Cliff(V , g) will be denoted
Cliff(d), using a single integer d to indicate the number of dimensions of V .

• When V is a d-dimensional vector space over R, Cliff(V , g) will be denoted
Cliff(p, q) , using a pair of integers (p, q) to indicate the signature of g.

Clifford algebra is often called geometric algebra,14 at least when the field of
scalars is R and the bilinear form g is nondegenerate.

12In this special case, the Clifford algebra Cliff(V, g) is the same as the exterior algebra that was introduced in
article 81674 using a different perspective.

13This is a tautology, because Lorentz transformations are defined to be those linear transformations of V that
leave g(a,b) invariant for all a,b ∈ V.

14According to Hestenes and Sobczyk (1992), this name was suggested by Clifford himself.
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5 The Clifford product of two vectors

Two vectors a,b are called orthogonal to each other if g(a,b) = 0. Equation (2)
implies that if two vectors are orthogonal with each other, then they anticommute
with each other:

if g(a,b) = 0, then ab = −ba. (3)

For any two vectors a and b, we can always decompose their Clifford product into
a symmetric part and an antisymmetric part:

ab =
ab + ba

2
+

ab− ba

2
. (4)

Equation (2) says that the symmetric part is the scalar g(a,b).
The antisymmetric part is denoted a ∧ b and called the wedge product (or

exterior product) of a and b. It is nonzero if and only if a and b are linearly
independent. Two linearly independent vectors span a plane (a two-dimensional
subspace), so the wedge product a∧b has a natural geometric interpretation using
the plane spanned by a and b. The wedge product is a d-dimensional generalization
of the traditional cross-product of two vectors in three-dimensional space,15 but it
is not a vector. It’s called a bivector. More generally, any linear combination of
bivectors is again called a bivector, even if it cannot be written as the wedge product
of two vectors (cannot be interpreted geometrically using a single plane).16,17 A
bivector that can be written as a ∧ b is called a simple bivector.

Neither g(a,b) nor a ∧ b is enough information to determine one of the two
vectors from the other one, but if g(a,b) or a ∧ b are both given (so that ab is
known), then the situation is better: given a and ab, if g(a, a) 6= 0,18 the product
of a/g(a, a) with ab gives b. More briefly: if g(a, a) 6= 0, then a is invertible.

15Article 81674
16Example: e1 ∧ e2 + e3 ∧ e4, where e1, e2, e3, e4 are mutually orthogonal.
17Given an orthogonal basis e1, ..., ed for V, a bivector is a linear combination of products ejek with j < k. A

linear combination of products ejeke` with j < k < ` is called a trivector.
18If g(a,a) = 0, then we still don’t have enough information, because then ab = a(b + sa) for every scalar s.
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6 The square of a simple bivector

The quantity (ab)2 is not necessarily a scalar, but the quantity (a ∧ b)2 is always
a scalar. Proof:

(a ∧ b)2 =

(
ab− ba

2

)2

=

(
ab + ba

2

)2

− abba + baab

2

=
(
g(a,b)

)2 − g(a, a)g(b,b).

This is true in every Clifford algebra, degenerate or not. It implies

(a ∧ b)3 ∝ a ∧ b.

In the euclidean case, the quantity
√
|(a ∧ b)2| defines a unit of area associated

with the two-dimensional subspace spanned by the vectors a and b, so a ∧ b may
be interpreted geometrically as an oriented element of area, just like a vector may
be interpreted as an oriented element of length. More precisely, we can think of
the two vectors a and b as the two sides of an oriented parallelogram with lengths√

a2 and
√

b2, and the quantity√
|(a ∧ b)2| =

√
(a · a)(b · b)− (a · b)2

is the area of this parallelogram.19

The square of a generic (not necessarily simple) bivector is not necessarily a
scalar. Example: if A = e1e2 + e3e4, where the eks are mutually orthogonal
vectors, then A2 = 2e1e2e3e4 + scalar.

19The quantity under the square root is the product of the lengths of the vectors a and b′, where b′ = b−(b·a/a·a)a
is the component of b orthogonal to a. This agrees with the familiar “width times height” rule for the area of a
parallelogram.
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7 A Clifford algebra is more than just an algebra

A homomorphism from one algebra A to another algebra B is a map

ρ : A→ B

for which

ρ(a+ a′) = ρ(a) + ρ(a′) ρ(sa) = sρ(a)

ρ(aa′) = ρ(a)ρ(a′)

for all a, a′ ∈ A and all scalars s. If another homomorphism

ρ−1 : B → A

exists with
ρ−1
(
ρ(a)

)
= a ρ

(
ρ−1(b)

)
= b

for all a ∈ A and all b ∈ B, then the homomorphism is called an isomorphism,
and A and B are said to be isomorphic to each other as algebras, denoted A ' B.
In colloquial terms: A and B are isomorphic to each other if they are the same as
algebras, even if they differ from each other in other ways.

Two Clifford algebras may be the same (isomorphic) as algebras even if they are
different as Clifford algebras, because the definition of a Clifford algebra involves
more than just its algebraic structure: the data that specifies a Clifford algebra
Cliff(V , g) includes V and g, which cannot always be inferred from the algebraic
structure of Cliff(V , g). The next section demonstrates this.
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8 The signature cannot be inferred from the algebra

The Clifford algebras Cliff(p + 1, q) and Cliff(q + 1, p) differ from each other as
Clifford algebras (when p 6= q), but they are the same as algebras:20,21

Cliff(p+ 1, q) ' Cliff(q + 1, p). (5)

This shows that the signature of a Clifford algebra typically cannot be inferred
from its algebraic structure alone.

To deduce the isomorphism (5), let

h, e1, ..., ep, f1, ..., fq

be a set of mutually orthogonal vectors in Cliff(p+ 1, q) satisfying

h2 = 1 e2
k = 1 f2

k = −1.

Now define
e′k ≡ hek f ′k ≡ hfk.

The quantities
h, f ′1, ..., f ′q, e′1, ..., e′p

all anti-commute with each other (ab = −ba), and they satisfy

(f ′k)
2 = 1 (e′k)

2 = −1,

so they have all the right algebraic properties to be re-interpreted as a set of
mutually orthogonal vectors generating Cliff(q+1, p). This shows that Cliff(p+1, q)
and Cliff(q+1, p) are the same (isomorphic) as algebras. They differ from each other
as Clifford algebras, because e′k and f ′k are designated as vectors in Cliff(q + 1, p)
but as bivectors in Cliff(p+ 1, q), and plain algebra ignores those designations.

20Benn and Tucker (1989), page 32, equation (2.2.7)
21The notation Cliff(p, q) was defined in section 4.
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9 Isomorphisms involving the even subalgebra

If A is an algebra, then a subset B ⊂ A is called a subalgebra if all linear combina-
tions and products of elements of B are also elements of B. Every Clifford algebra
Cliff(V , g) has a subalgebra called the even subalgebra, which is the smallest
subalgebra containing all products of vectors with an even number of vectors in
each product. The even subalgebra of Cliff(V , g) will be denoted Cliffeven(V , g).

Each nondegenerate Clifford algebra is isomorphic (as an algebra) to the even
subalgebra of a Clifford algebra in a higher dimension. For nondegenerate Clifford
algebras over C, the relationship is22,23

Cliff(d) ' Cliffeven(d+ 1).

For nondegenerate Clifford algebras over R, the relationship is24

Cliff(q, p) ' Cliffeven(p+ 1, q). (6)

Notice that p and q switch positions.25 Example: Cliff(1, 0) ' Cliffeven(1, 1).
The relationship (6) can be deduced using the same approach that was used in

section 8. Let
h, e1, ..., ep, f1, ..., fq

be a set of mutually orthogonal vectors in Cliff(p+ 1, q) satisfying

h2 = 1 e2
k = 1 f2

k = −1.

Now define e′k ≡ hek and f ′k ≡ hfk, just like in section 8. These quantities generate
the even subalgebra of Cliff(p+1, q). They are designated as bivectors in the context
of Cliff(p + 1, q), but their algebraic properties are consistent with re-interpreting
them as mutually orthogonal vectors in Cliff(q, p).

22Benn and Tucker (1989), page 80, equation (2.7.5)
23The notation Cliff(d) was defined in section 4.
24Benn and Tucker (1989), page 39, equation (2.3.1)
25The relationship Cliffeven(p, q) ' Cliffeven(q, p) also holds. To check this informally, use the fact that replacing

every vector v ∈ Cliff(p, q) with iv (with i2 = −1) converts Cliff(p, q) to Cliff(q, p).
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10 The algebraic structure of Clifford algebras

The concept of isomorphism defined in section 7 can be used to relate the algebraic
structure of a Clifford algebra to that of another standard algebra. This section
summarizes how the nondegenerate Clifford algebras are related to matrix algebras.

For nondegenerate Clifford algebras over C, the relationships follow a relatively
simple pattern:26

Cliff(2n) 'MC(2n)

Cliff(2n+ 1) 'MC(2n)⊕MC(2n),

where MC(k) is the algebra of k × k matrices over C.
For nondegenerate Clifford algebras over R, the relationships follow a more

elaborate pattern. Let MR(k) be the algebra of k × k matrices over R, and let
MH(k) be the algebra of k × k matrices whose components are elements of the
quaternion algebra27 H. For each p, q, an integer k > 0 exists for which these
relationships hold:28,29,30

p− q modulo 8 Cliff(p, q) '
0 MR(k)
1 MR(k)⊕MR(k)
2 MR(k)
3 MC(k)

p− q modulo 8 Cliff(p, q) '
4 MH(k)
5 MH(k)⊕MH(k)
6 MH(k)
7 MC(k)

26Figueroa-O’Farrill (2015), section 4, table 3. Beware of the error in Benn and Tucker (1989)’s equation (2.7.4b).
27The quaternion algebra may itself be defined using the isomorphism H ' Cliff(0, 2), which is one of the

cases listed in the table. Thanks to the isomorphism Cliff(0, 2) ' Cliffeven(3, 0) which is a special case of (6), the
quaternion algebra may also be defined using H ' Cliffeven(3, 0). Explicitly: if e1, e2, e3 is a basis of orthogonal
vectors in Cliff(3, 0), then the three bivectors i ≡ e1e2 and j ≡ e2e3 and k ≡ e3e1 generate H.

28Benn and Tucker (1989), page 35, equation (2.2.10), and page 40, table 2.8. Sometimes the Clifford algebra is
defined with an extra minus sign, using v2 = −g(v,v) instead of equation (1). Example: Figueroa-O’Farrill (2015).
That switches the roles of p and q in the table.

29In these relationships, the matrix algebras are regarded as algebras over R, even though their components may
belong to C or H. In other words, two matrices X1 and X2 are considered to be linearly independent if r1X1+r2X2 6= 0
for all nonzero real numbers r1, r2.

30The isomorphisms (5) can be inferred from this table.
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11 Examples, part 1

Consider Cliff(0, 1), and let i ∈ Cliff(0, 1) be a vector satisfying i2 = −1. All
elements of this Clifford algebra have the form x + yi, where x, y are arbitrary
real numbers. This shows that Cliff(0, 1) is isomorphic to the algebra of complex
numbers:

Cliff(0, 1) ' C. (7)

Use
0− 1 = 7 (modulo 8)

to see that this is consistent with the table in section 10, with k = 1 in this case.
In the relationship (7), C is interpreted as an algebra over R, so that the real and
imaginary units are linearly independent.

Next, consider Cliff(1, 0), and let v ∈ Cliff(1, 0) be a vector satisfying v2 = 1.
Every element of this Clifford algebra has the form x+yv, where x, y are arbitrary
real numbers. Alternatively, every element of Cliff(1, 0) may be written

x+P+ + x−P−

with P± ≡ (1 + v)/2, where x± are arbitrary real numbers. The quantities P±
commute with everything (including each other), and they satisfy P 2

± = P±, so

Cliff(1, 0) ' R⊕ R. (8)

This is consistent with the table in section 10, with k = 1 in this case. In the
relationship (8), the first R in R ⊕ R is the one-dimensional algebra generated by
P+ with coefficients in the field of real numbers (using P+ as the identity element),
and the second R in R ⊕ R is the one-dimensional algebra generated by P− with
coefficients in the field of real numbers (using P− as the identity element).

In section 10, the cases involving “⊕” are precisely the cases for which Cliff(p, q)
has a set of mutually orthogonal vectors e1, ..., ep+q whose product Z ≡ e1 · · · ep+q

commutes with everything and satisfies Z2 = 1. Just like in the preceding example,
we can use this to define two mutually orthogonal projection operators P± ≡ (1±
Z)/2 that commute with everything. This explains the “⊕” structure.

13
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12 Examples, part 2

Now consider Cliff(1, 1). Let e, f ∈ Cliff(1, 1) be mutually orthogonal vectors sat-
isfying e2 = 1 and f2 = −1. Every element of this Clifford algebra is a linear
combination of 1, e, f , and ef , with real numbers as coefficients. If we use the
matrix representation

1→
[
1 0
0 1

]
e→

[
0 1
1 0

]
f →

[
0 1
−1 0

]
ef →

[
−1 0
0 1

]
,

then the matrix product satisfies the same multiplication table as the Clifford
product. This shows that

Cliff(1, 1) 'MR(2),

which is consistent with the table in section 10, with k = 2 in this case.
Next, consider Cliff(4, 1) and Cliff(4). These are different from each other as

Clifford algebras, and they are also different from each other as plain algebras,
because Cliff(4, 1) uses the real numbers R as its field of scalars, whereas Cliff(4)
uses the complex numbers C as its field of scalars. However, we can also think of
Cliff(4) as an algebra over R, meaning we think of two elements X, Y ∈ Cliff(4) as
being linearly independent if xX+yY 6= 0 for all nonzero real numbers x, y. When
we think of Cliff(4) this way, then

Cliff(4, 1) ' Cliff(4). (9)

This is consistent with the relationships in section 10, namely Cliff(4, 1) ' MC(2)
and Cliff(4) ' MC(2), if we think of all of these algebras as algebras over R. To
deduce the relationship (9), let e1, ..., e4 and f be a set of mutually orthogonal
vectors in Cliff(4, 1) with e2

k = 1 and f2 = −1. Define i ≡ e1e2e3e4f , which
satisfies i2 = −1 and commutes with everything in Cliff(4, 1). The relationship (9)
follows from the fact that every element of Cliff(4, 1) may be written as a linear
combination of the ek with coefficients of the form x+ yi with x, y ∈ R.

14
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13 Examples, part 3

As a final example, consider Cliff(5, 0). According to the table in section 10,

Cliff(5, 0) 'MH(2)⊕MH(2). (10)

To deduce this, let e1, ..., e5 be mutually orthogonal vectors in Cliff(5, 0) satisfying
e2
k = 1. Let C4 ⊂ Cliff(5, 0) be the subalgebra generated by e1, e2, e3, e4, which

is clearly isomorphic to Cliff(4, 0). Let H ⊂ C4 be the subalgebra consisting of
elements of the form

h = w + xe2e3 + ye3e1 + ze1e2 w, x, y, z ∈ R

so that H is isomorphic to the quaternion algebra H (footnote 27 in section 10).
The quantities e4 and f ≡ e1e2e3 anticommute with each other, commute with
everything in H, and satisfy e2

4 = 1 and f2 = −1. This can be used to show that if
we use the matrix representation

he4 =

[
0 h
h 0

]
he1e2e3 =

[
0 h
−h 0

]
, (11)

then the matrix product agrees with the Clifford product. The quantities e4 and
f together with H generate all of C4, and matrices of the form (11) generate all of
MH(2) (the algebra of 2× 2 matrices over H),31 so

C4 'MH(2). (12)

The product Z ≡ e1e2e3e4e5. commutes with everything and satisfies Z2 = 1, so
the quantities P± ≡ (1 ± Z)/2 commute with everything (including each other)
and satisfy P 2

± = P± and P+P− = 0. The subsets C4P+ and C4P− are mutually
commuting subalgebras (with unit elements P+ and P−, respectively) that are both
isomorphic to C4 and together span Cliff(5, 0), so we have deduced Cliff(5, 0) =
C4P+ ⊕ C4P− ' C4 ⊕ C4. Combine this with (12) to get the result (10).

31Notice the font: H versus H. Compare to equation (12).
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