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The Hopf Fibration: an Example of a
Nontrivial Principal Bundle

Randy S

Abstract The Hopf bundle, also called the Hopf fibration,
is a relatively simple example of a principal bundle. A principal
bundle is a mathematical structure that is important in the study of
gauge fields. Articles 70621 and 76708 introduced some of the general
concepts, and this article uses the Hopf bundle to illustrate a few of
them in detail.
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1 The Hopf bundle

To illustrate some of the concepts that were defined in articles 70621 and 76708,
this article describes a nontrivial principal U(1)-bundle called the Hopf bundle
or the Hopf fibration. Its structure group U(1) is the group of complex numbers
of magnitude 1 with ordinary multiplication as the product. The total space is S3

and the base space is S2, where Sk denotes the k-dimensional sphere – the set of
points in k + 1-dimensional euclidean space whose distance from the origin is 1.

The total space S3 and the base space S2 will both be described using a pair of
complex variables z, w. To describe the total space S3, use the fact that the real
and imaginary parts of z, w are coordinates for a four-dimensional space R4. Then
the condition

|z|2 + |w|2 = 1 (1)

describes a three-dimensional manifold S3 embedded in R4. Each point of S3 is a
pair (z, w) satisfying the condition (1). The action of the structure group U(1) on
the total space S3 is defined by1,2

(z, w)× λ = (λz, λw)

with λ ∈ U(1). To describe the base space S2, consider the equivalence relation3

(λz, λw) ∼ (z, w) (2)

for all λ ∈ U(1). Let [z, w] denote4 the equivalence class that includes the pair
(z, w), and define the bundle projection p : S3 → S2 by

p(z, w) = [z, w]. (3)

1Wendl (2007), example 2.92
2Since the structure group is abelian in this example, we don’t need to distinguish between the left and right

actions of the structure group.
3Nakahara (1990), text around equation (9.58)
4Articles 70621 and 76708 used the notation [·, ·] for other things, not related to the way it’s used here.
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To see that the image of this projection really is S2, cover S2 with two charts, each
of which excludes only one point of S2: one chart Uw 6=0 that excludes the point
[z, w] with w = 0, and one chart Uz 6=0 that excludes the point [z, w] with z = 0.
Use the real and imaginary parts of x+ iy ≡ z/w as coordinates for Uw 6=0, and use
the real and imaginary parts of x′ + iy′ ≡ w/z as coordinates for Uz 6=0. These two
charts are glued together by the relation x′ + iy′ = 1/(x + iy) wherever z and w
are both nonzero. For the chart Uw 6=0, the map

(z, w) 7→
(
z/w, w/|w|

)
(4)

is a local trivialization, with inverse5

(a, b) 7→ (ab/c, b/c) c ≡
√
|a|2 + |b|2.

For the chart Uz 6=0, the map

(z, w) 7→
(
w/z, z/|z|

)
(5)

is a local trivialization, with inverse

(a, b) 7→ (b/c, ab/c) c ≡
√
|a|2 + |b|2.

5This assumes that z, w satisfy the condition (1).
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2 Comparison to other U(1)-bundles over S2

The Hopf bundle is one example of a principal U(1)-bundle over S2, but it’s not
the only one. Other examples include:

• The trivial bundle with total space S2 × U(1).

• The unit tangent bundle of S2, obtained from the tangent bundle of S2 by
keeping only the tangent vectors whose length is 1. Article 70621 shows that
the total space of this bundle is the real projective space RP 3, so it is distinct
from the trivial bundle and from the Hopf bundle.

• The Hopf bundle and the preceding examples all fit neatly into a larger pat-
tern. Oriented principal U(1)-bundles over S2 are uniquely classified (up to
equivalence) by an integer n. Such a bundle exists for each integer value of
n, including these special cases:

– The case n = 0 is the trivial bundle, with total space S2 × S1.

– The case n = 1 is the Hopf bundle, with total space S3.

– The case n = 2 is the unit tangent bundle of S2, with total space RP 3.

Chapters 21-25 will describe the generalization to arbitrary n in more detail.
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3 The Lie algebra

In this article, the structure group is the Lie group U(1), which we can think of as
a one-dimensional manifold consisting of all complex numbers of the form eiφ with
ordinary multiplication as the group operation. The Lie algebra is one-dimensional,
spanned by a single element. We can think of elements of a Lie algebra in a few
different ways:6

• An element of the Lie algebra is a right-invariant vector field on the Lie-group
manifold.7 With this perspective, the Lie algebra of U(1) is spanned by the
single vector field ∂φ.

• An element of the Lie algebra is a vector tangent to the Lie-group manifold
at the point corresponding to the identity element.8 With this perspective,
the Lie algebra of U(1) is spanned by the single tangent vector ∂φ

∣∣
φ=0

.

• For a matrix group, an element of the Lie algebra is a matrix, which generates
a one-parameter subgroup of the Lie group through exponentiation.9 With
this perspective, the Lie algebra of U(1) is spanned by the “matrix” with
only one row and one column, whose entry is the imaginary unit i.10

We can relate the first perspective to the third one by using the identity

eθ∂φeiφ = ei(θ+φ) = eiθeiφ.

The first equality says that the vector field ∂φ generates translations on the group
manifold U(1), and the second equality says that i generates the same translation,
now represented as a group operation (multiplication by eiθ). By comparing the
translations amounts on both sides of this identity, we learn that the same element
of the Lie algebra may be represented either by the vector field ∂φ or by i.

6Article 76708
7Nakahara (1990), definition 5.48
8Fulton and Harris (1991), section 8.1
9Article 18505

10The Lie algebra of U(N) is naturally generated by antihermitian matrices of sizeN×N . Sometimes the generators
are normalized to be hermitian instead, as in equation (19).
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4 Vector fields tangent to the total space

Define real variables xk by

z = x1 + ix2 w = x3 + ix4.

Then the condition (1) is
x2

1 + x2
2 + x2

3 + x2
4 = 1. (6)

The partial derivatives

∂k ≡
∂

∂xk

are vector fields in the four-dimensional space covered by the coordinates xk. Each
of the combinations

Ljk ≡ xj∂k − xk∂j
annihilates the left-hand side of (6), so the vector fields Ljk are all tangent to the
manifold S3 defined by (6).11 Chapter 5 will show that the three combinations

XV ≡ L12 + L34 X3 ≡ L13 + L42 X4 ≡ L14 + L23 (7)

are linearly independent everywhere on S3, so they span the tangent space at each
point of S3. The reason for writing the first subscript as V will become clear soon.

We’re using four coordinates x1, ..., x4 to describe a three-dimensional manifold,
namely the manifold S3 defined by the constraint (6). This has the advantage of
making some of the patterns more clear,12 but it also requires some extra care: we
need to remember that the coordinates x1, ..., x4 are not completely independent of
each other on the manifold of interest.

11If a vector field were not tangent to this S3, then it would be tangent to a curve along which the value of the
left-hand side of (6) is not constant, so it would not annihilate the left-hand side of (6).

12This is a common theme in theoretical physics: many patterns can be made more evident by using redundant
variables. Article 12883 also illustrates this theme.
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5 Linear independence

To prove that the three vector fields (7) are linearly independent everywhere on
S3, suppose that constants a, b, c existed for which

aXV + bX3 + cX4 = 0 (8)

at some point of S3. This condition may be written in matrix form like this:

CTΓ


∂1

∂2

∂3

∂4

 = 0 with C ≡

ab
c

 and Γ ≡

−x2 x1 −x4 x3

−x3 x4 x1 −x2

−x4 −x3 x2 x1

.
This implies ΓTC = 0, which in turn implies ΓΓTC = 0, but equation (6) implies
that ΓΓT is the identity matrix, so C = 0. This shows that at any given point of
S3, the only solution of equation (8) is a = b = c = 0, so three vector fields (7) are
linearly independent everywhere on S3.
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6 The vertical subspace

The tangent space at each point of a fiber bundle has a distinguished subspace
called the vertical subspace, which is the subspace tangent to the fiber.13 This
chapter describes the vertical subspace at each point of the Hopf bundle.

The first step is to show that the vector field XV that was defined in chapter 4 is
vertical. To do this, write z̄ for the complex conjugate of z. Use the abbreviations

∂z =
1

2
(∂1 − i∂2) ∂w =

1

2
(∂3 − i∂4)

so that ∂zz = 1 and ∂zz̄ = 0, and write ∂z̄ for the complex conjugate of ∂z. Then
the vector field XV defined in equation (7) may be written

XV = i(z∂z + w∂w − z̄∂z̄ − w̄∂w̄). (9)

Equation (3) implies that vertical vectors should annihilate any function of z, w that
is invariant under (z, w) 7→ (λz, λw) whenever |λ| = 1. Any such function may be
written f(z̄w, w̄z, z̄z, w̄w). The vector field (9) annihilates all such functions, so
XV is vertical.

The vertical subspace at each point is one-dimensional because the fiber is a
one-dimensional manifold (namely S1), and XV is nonzero everywhere on S3, so
the vertical subspace at each point of S3 is spanned by the vector that the field
XV assigns to that point. This is a way of describing the vertical subspace at each
point of the Hopf bundle.

13Article 76708
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7 Why the vector field XV is special

The vector field XV is not the only vertical vector field: multiplying XV by any
scalar function gives another vertical vector field. The vector field XV is special,
though. This chapter explains why.

In a principal G-bundle, the space of vectors tangent to the fiber may be natu-
rally identified with the Lie algebra of G.14 In this example, the group G is U(1),
which we can view as the multiplicative group of complex numbers of the form eiφ

with real φ. The Lie algebra is one-dimensional, generated by a single vector field
∂φ that is invariant under the action of the group.15 Equation (9) shows that the
identity [

∂φf(eiφz, eiφw)
]
φ=0

= XV f(z, w)

holds for every function f of the variables z, w and their complex conjugates (or
of the real variables xk defined in chapter 4). This identity shows that when we
re-interpret the vertical vector field XV as a Lie-algebra-valued field, it assigns
the same element of the Lie algebra (namely ∂φ) to every point of every fiber. A
vertical vector field with this property is called a fundamental vector field.14 The
only other vector fields with this property are proportional to XV with a constant
proportionality factor.16

14Article 76708.
15Chapter 3
16Multiplying XV by a non-constant scalar function gives another vertical vector field, but not one that corresponds

to the same element of the Lie algebra everywhere.
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8 Example of a principal connection

A connection projects the tangent space at each point of the total space onto its
vertical subspace. The subspaces that get projected to zero are called horizontal
subspaces.17 The Hopf bundle admits infinitely many different connections. This
chapter describes one of them, which will be used throughout the rest of this article.

The tangent space at each point of S3 is three-dimensional, and the vertical
subspace is one-dimensional, so the horizontal subspace must be two-dimensional.
The connection that will be used for the rest of this article is the one for which the
vector fields X3 and X4 defined in chapter 6 are horizontal.

This connection is a principal connection, which means it satisfies an extra
condition that is natural to require in the context of a principal bundle: under the
action x→ xλ of λ ∈ U(1) on x ∈ S3, the horizontal subspaces remain horizontal.
To check that the subspaces spanned by X3 and X4 have this property, write them
as

X3 = X1 +X2 X4 = (X2 −X1)/i

with
X1 ≡ z̄∂w − w̄∂z X2 ≡ z∂w̄ − w∂z̄.

When the action x → xλ, the vector fields X1 and X2 become λ̄2X1 and λ2X2,
which are still horizontal (still linear combinations of X3 and X4 at each point).

17Article 76708
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9 One-forms and redundant coordinates

In the preceding sections, the three-dimensional manifold S3 is described using four
coordinates x1, ..., x4 subject to the constraint (6). The differential (or exterior
derivative) of equation (6) is

x1 dx1 + x2 dx2 + x3 dx3 + x4 dx4 = 0, (10)

which says that the one-forms dxk are not linearly independent. This will be
important in chapter 16.
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10 Connection one-form

This chapter constructs a one-form ω with these properties:

• ω(X) = 0 whenever X is horizontal according to the connection that was
defined in chapter 8,

• ω(XV ) = i.

The imaginary unit i is one way to represent the element of the Lie algebra that
the fundamental vector field XV assigns to every point of the total space,18 so the
one-form ω is the connection one-form representing the connection that was
defined in chapter 8.

The one-form with these properties is

ω = i(ω12 + ω34) (11)

with
ω12 ≡ x1 dx2 − x2 dx1 ω34 ≡ x3 dx4 − x4 dx3.

To confirm that this has the required properties, use

ω12(L12) = x2
1 + x2

2 ω12(L13 + L42) = x1x4 + x2x3

ω34(L34) = x2
3 + x2

4 ω34(L13 + L42) = −x1x4 − x2x3

ω12(L34) = 0 ω12(L14 + L23) = x2x4 − x1x3

ω34(L12) = 0 ω34(L14 + L23) = −x2x4 + x1x3

together with equation (6).
Instead of using the Lie-algebra-valued one-form ω, the connection may also be

represented as a tensor field of type
(

1
1

)
,19 namely Φ = XV ⊗ (ω12 + ω34). This

satisfies Φ(X) = 0 whenever X is horizontal, and Φ(XV ) = XV .
18In chapter 7, the same element of the Lie algebra was represented as ∂φ. Chapter 3 reviewed the relationship

between different ways of representing elements of the Lie algebra.
19Article 76708
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11 Examples of local sections

The Hopf bundle does not have any globally-defined section,20 but it does have
local sections defined in sufficiently small charts. This chapter describes two ex-
amples, and chapter 12 will show that they are related to each other by a gauge
transformation where they overlap. The notation from chapters 1-4 will be used
again here.

First consider the chart defined by w 6= 0. In this chart, use coordinates

x+ iy ≡ z

w
=
x1 + ix2

x3 + ix4
. (12)

Use the abbreviation ρ ≡
√
x2 + y2, and define a section σ by taking σ(x, y) to be

the point in S3 with coordinates (x1, ..., x4) =
(
σ1(x, y), ..., σ4(x, y)

)
given by

σ1(x, y) + iσ2(x, y) =
x+ iy√
1 + ρ2

σ3(x, y) + iσ4(x, y) =
1√

1 + ρ2
. (13)

This is consistent with (12) and with (1).
To cover the point w = 0, we can use a different chart, say the chart defined by

z 6= 0. In this chart, we can use coordinates

x̃+ iỹ ≡ w

z
=
x3 + ix4

x1 + ix2
, (14)

and we can define a section σ̃ on this chart by (x1, ..., x4) =
(
σ̃1(x, y), ..., σ̃4(x, y)

)
with

σ̃1(x̃, ỹ) + iσ̃2(x̃, ỹ) =
1√

1 + ρ̃2
σ̃3(x̃, ỹ) + iσ̃4(x̃, ỹ) =

x̃+ iỹ√
1 + ρ̃2

(15)

and ρ̃ ≡
√
x̃2 + ỹ2.

20A principal bundle cannot have a (globally defined) section unless it is trivial (article 70621).
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12 Relationship between the two local sections

Where the two charts defined in chapter 11 intersect, which is where z and w are
both nonzero, the two coordinate systems for M are related to each other by

x̃+ iỹ = 1/(x+ iy)

(because z/w = 1/(w/z)), which implies

x̃ =
x

ρ2
ỹ =
−y
ρ2
. (16)

Use this in (15) to write the section σ̃ in terms of the coordinates x, y:

σ̃1 + iσ̃2 =
ρ√

1 + ρ2
σ̃3 + iσ̃4 =

x− iy
ρ
√

1 + ρ2
. (17)

Define φ by x+ iy = ρeiφ to see that the sections (13) and (17) are related to each
other by a gauge transformation:

σ̃1 + iσ̃2 = e−iφ(σ1 + iσ2) σ̃3 + iσ̃4 = e−iφ(σ3 + iσ4) (18)

16
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13 Local potentials: two conventions

A connection one-form ω is a Lie-algebra-valued one-form ω defined on the total
space. A local potential21 is the pullback of a connection one-form ω by a local
section σ. The local section is defined on a chart U ⊂ M , so the resulting local
potential is a Lie-algebra-valued one-form on that part of the base space.

When G is a matrix group, an element of the Lie algebra of G is naturally
represented as an antisymmetric matrix. Article 76708 defines the local potential
as A ≡ σ∗ω, so that evaluating A on a given vector at a given point of U would
give an antisymmetric matrix. This article uses the convention

A ≡ −iσ∗ω (19)

instead, so that evaluating A on a given vector at a given point of U gives a
symmetric matrix. (In this article, a symmetric matrix is a single real number,
because the Lie algebra of U(1) is one-dimensional.) This convention has the benefit
of making the results in chapters 17-20 easier to relate to the physics literature.

21Article 76708
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14 Examples of local potentials

This chapter derives the local potentials defined by the connection one-form from
chapter 10 and the two local sections from chapter 11.

First consider the chart and coordinates defined by (12). Given any section σ,
the vector fields ∂x and ∂y on M define pushforwards ∂x,σ and ∂y,σ on σ(M) ⊂ E
through these conditions:

∂x,σf(x1, ..., x4) ≡ ∂xf
(
σ1(x, y), ..., σ4(x, y)

)
∂y,σf(x1, ..., x4) ≡ ∂yf

(
σ1(x, y), ..., σ4(x, y)

)
(20)

for all smooth real-valued functions f defined on points of the section. This gives

∂x,σ =
∑
k

(∂xσk)∂k ∂y,σ =
∑
k

(∂yσk)∂k, (21)

so the local potential (19) defined using the connection one-form (11) is given by

iA(∂x) ≡ ω(∂x,σ) = (∂xσ1)σ2 − (∂xσ2)σ1 + (∂xσ3)σ4 − (∂xσ4)σ3

iA(∂y) ≡ ω(∂y,σ) = (∂yσ1)σ2 − (∂yσ2)σ1 + (∂yσ3)σ4 − (∂yσ4)σ3. (22)

Using the local section (13) on the right-hand side gives

A(∂x) =
−y

1 + ρ2
A(∂y) =

x

1 + ρ2
, (23)

so the local potential is

A = A(∂x)dx+ A(∂y)dy =
x dy − y dx

1 + ρ2
. (24)

Now consider the chart and coordinates defined by (14). For the local section
defined by (15), following the same pattern as before leads to the local potential

Ã ≡ −iσ̃∗ω =
x̃ dỹ − ỹ dx̃

1 + ρ̃2
. (25)
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15 Relationship between the local potentials

The intersection between the chart with w 6= 0 and the chart with z 6= 0 consists
of all points for which z and w are both nonzero. In the intersection, the two coor-
dinate systems for M defined in chapter 11 are related to each other by equations
(16). Use that relationship in (25) to get

Ã = −x dy − y dx
(1 + ρ2)ρ2

=
−A
ρ2

. (26)

Now Ã is expressed using the same coordinate system as A, we can consider their
difference:

A− Ã =
x dy − y dx

1 + ρ2

(
1 +

1

ρ2

)
=
x dy − y dx

ρ2
. (27)

Now define φ by x+ iy = ρeiφ, as in chapter 12. Use y/x = tanφ to get

x dy − y dx
x2

= (1 + tan2 φ)dφ,

which may be re-arranged to get

x dy − y dx
ρ2

= dφ. (28)

Use this in (27) to get
Ã = A− dφ. (29)

19
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16 Curvature of the connection

The curvature of a connection one-form ω is given by22

Ω(X, Y ) = (dω)(XH , YH),

where XH , YH are the horizontal components of the vector fields X, Y on S3. When
the structure group is abelian, as it is in this article, the exterior derivative dω of
ω is automatically independent of the vertical components of the vectors X, Y that
we feed into it,22 so in this case we can write

Ω(X, Y ) = (dω)(X, Y ). (30)

The exterior derivative of the connection one-form defined by equation (11) is

dω = 2i(dx1 ∧ dx2 + dx3 ∧ dx4).

More explicitly,

(dω)(X, Y ) ∝ dx1(X)dx2(Y )− dx1(Y )dx2(X) + dx3(X)dx4(Y )− dx3(Y )dx4(X).
(31)

To confirm that this is independent of the vertical components of X and Y , set
X = XV , where XV ≡ L12 + L34 is the vertical vector field defined in chapter 4.
Use the identities

dx1(XV ) = −x2 dx2(XV ) = x1 dx3(XV ) = −x4 dx4(XV ) = x3

in equation (31) to get

Ω(XV , Y ) ∝ x1 dx1(Y ) + x2 dx2(Y ) + x3 dx3(Y ) + x4 dx4(Y ).

Equation (10) says that this is zero for all vector fields Y tangent to the total space
S3. This shows that (dω)(X, Y ) is independent of the vertical components of X, Y ,
as claimed, with the understanding that we should only consider vector fields X, Y
that are tangent to S3.23

22Article 76708
23Recall the warning at the end of chapter 4.
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17 Field strength

The field strength F is the pullback of the curvature two-form Ω by a local section
σ,24,25 defined here with a factor of i as in (19):

F ≡ −iσ∗Ω. (32)

When the structure group is abelian, the field strength may be written24

F = dA

where A is the local potential (the pullback of the connection ω by the given local
section). The field strength of the local potential (24) is

F = 2
dx ∧ dy
1 + ρ2

− dρ ∧ x dy − y dx
(1 + ρ2)2

= 2
dx ∧ dy
1 + ρ2

− 2(x dx+ y dy) ∧ x dy − y dx
(1 + ρ2)2

= 2
dx ∧ dy
1 + ρ2

− 2ρ2 dx ∧ dy
(1 + ρ2)2

=
2 dx ∧ dy
(1 + ρ2)2

. (33)

Equation (29) says that this is the same as the field strength of the local potential
(25) where the two charts overlap, because d(dφ) = 0.26 This is consistent with
a general result deduced in article 76708: when the structure group is abelian,
the field strength is independent of which section is used. As a result, when the
structure group is abelian, the field strength is defined on the whole base space,
not just on individual charts.

24Article 76708
25The curvature is a two-form on the total space S3. The field strength is a two-form on the base space S2.
26The function φ itself is defined only modulo 2π, but the identity (28) may be used to check that d(dφ) = 0.
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18 Total flux, first method

The field strength F depends on the connection ω, but its integral over the base
space – the total flux

∫
M F – does not: the total flux is a property of the fiber

bundle itself.27 Changing the connection changes the way the flux is distributed
over the base space, but it doesn’t change the total.

This chapter calculates the integral of the field strength (33) over the whole
base space M = S2. The result is28 ∫

M

F = 2π. (34)

A trivial bundle admits a connection for which dω = 0, so the total flux (which
is independent of the connection) for a trivial bundle must be zero. The nonzero
result (34) implies that the Hopf bundle cannot be trivial.

Here’s the calculation that gives the result (34):∫
M

F = 2

∫ ∞
−∞

dx

∫ ∞
−∞

dy
1

(1 + ρ2)2

= 2

∫ 2π

0

dφ

∫ ∞
0

ρ dρ
1

(1 + ρ2)2
(x+ iy = ρeiφ)

= 4

∫ ∞
0

ρ dρ
1

(1 + ρ2)2

= 2π

∫ ∞
1

ds
1

s2
(s ≡ 1 + ρ2)

= 2π

27Collinucci and Wijns (2006), equation (122) and the text below equation (118)
28The expression (33) for the field strength is derived from a local potential that is defined only in one chart, but

that chart covers almost all of the base space M , excluding only a set of measure zero, so we can still use this to
calculate the integral over all of M .
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19 Total flux, second method

The result derive in chapter 18 can also be derived another way, using the relation-
ship29 ∫

Σ

F =

∫
Σ

dA =

∫
∂Σ

A

for any two-dimensional part Σ of the chart on which the local potential A is
defined, with boundary ∂Σ.30 To use this approach, write M as the union of two
surfaces Σ and Σ̃, where Σ is the part of M defined by |z/w| ≤ 1 and Σ̃ is the part
defined by |w/z| ≤ 1. These two surfaces share the same boundary, which is the
circle |z/w| = 1, so ∫

M

F =

∫
Σ

F +

∫
Σ̃

F

=

∫
Σ

dA+

∫
Σ̃

dÃ

=

∫
∂Σ

A+

∫
∂Σ̃

Ã (35)

whereA and Ã are the local potentials given in equations (24) and (25), respectively.
On the shared boundary, the condition |z/w| = 1 allows us to write the coordinates
defined in equations (12) and (14) in terms of angular variables φ and φ̃ defined by

x+ iy = eiφ and x̃+ iỹ = eiφ̃. This gives∫
∂Σ

A =
1

2

∫ 2π

0

dφ = π

∫
∂Σ̃

Ã =
1

2

∫ 2π

0

dφ̃ = π,

and using these in (35) reproduces the result (34).

29This is a special case of Stokes’ theorem (article 09894).
30I’m being cavalier about orientations here, but orientations are important: the direction in which we integrate

around the boundary must be consistent with the orientation of the surface integral.
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20 Quantization of the total flux

Consider any principal U(1)-bundle with base space M = S2. (The Hopf bundle is
one example.) This chapter shows that for any such bundle, the total flux must be
an integer multiple of 2π, as illustrated by the result (34).

Divide the base space M = S2 into two contractible surfaces U1 and U2, whose
shared boundary is a closed curve γ. Let A1 and A2 be local potentials for these
two surfaces, so that

total flux =

∫
γ

A1 −
∫
γ

A2. (36)

The negative sign in the second term accounts for the fact that we must integrate
around the curve γ in opposite directions in the two terms so that their sum gives
the total flux, oriented consistently over all of the base space. The local potentials
A1 and A2 correspond to the same connection but to different local sections (one
defined over U1 and the other over U2), so they are related to each other by a gauge
transformation – a U(1)-valued function g of the overlap U1∩U2 = γ. Parameterize
the curve γ by a real variable t. Since γ(t) is a closed curve, the function g(t) must
have the form eiφ(t) for some smooth real-valued function φ(t) whose initial and
final values differ by 2πn for some integer n, so that the initial and final values of
g(t) are equal to each other. Using the result derived in article 76708 for the effect
of a gauge transformation on a local potential (and accounting for the factor of −i
in the definition (19)), the relationship between A1 and A2 is

A1 = A2 + dφ.

Use this in equation (36) to get

total flux =

∫
γ

(A2 + dφ)−
∫
γ

A2 =

∫
γ

dφ = 2πn, (37)

which shows that the total flux must be an integer multiple of 2π.
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21 Connection-independence of the total flux

The derivation in chapter 20 showed that the total flux must be an integer multiple
of 2π, but it also showed something else: it showed that the total flux is independent
of the connection, because the local potential cancels in equation (37). The integer
n on the right-hand side of equation (37) must therefore be an intrinsic property
of the principal bundle itself, regardless of which connection we choose.

The quantity −F/2π, whose integral over the base space equals −n, is called the
first Chern class. More precisely and more generally, given a principal G-bundle
and an associated vector bundle that uses a linear representation ρ of G,31 the first
Chern class is the quantity −trace

(
ρ(F )

)
/2π.32,33 If G = U(1) and if ρ is faithful,

then we can write it more simply as −F/2π.
Chapter 20 showed that for a U(1) bundle over S2, the integral of the first Chern

class is an integer. That’s a special case of a general theorem saying that the top
Chern class (which involves k factors of the two-form F if the base space is 2k-
dimensional) gives an integer called the Euler characteristic or Euler number
when integrated over the base space.34,35

Up to equivalence, one principal U(1)-bundle over S2 exists with Euler number
n, for each integer n.36 Chapters 22-25 will describe the n 6= 0 cases in detail.

31Article 70621
32Nakahara (1990), section 11.2.1
33If the factor of −i were omitted in equations (19) and (32), as in Nakahara (1990) equations (10.6) and (10.37),

then the standard coefficient of the first Chern class would be i/2π, as in Nakahara (1990) equation (11.31b), instead
of −1/2π.

34Bott and Tu (1982), theorem 11.6, proposition 11.24, and statement (20.10.6)
35Some geometric intuition about the Euler number is given in Wendl (2019), section 1.1; and in Weiss (2018),

beginning of section 17.7
36Turaev (1992), pages 50-51 (text following corollary 3.3, and at the beginning of part d of section 3)
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22 Generalization to any n 6= 0: construction

This chapter explains how to construct the nontrivial U(1)-bundles over S2 that
were mentioned in chapters 2 and 21, one for each nonzero value of the integer in
equation (37).

As in chapter 1, use a pair of complex variables z, w subject to the condition (1)
to describe a three-dimensional manifold S3 embedded in R4. Let [z, w]M denote
the equivalence class defined by the equivalence relation

(λz, λw) ∼ (z, w) for all λ ∈ U(1), (38)

and let [z, w]E denote the equivalence class defined by the equivalence relation

(e2πik/nz, e2πik/nw) ∼ (z, w) for all integers k, (39)

where n is a fixed nonzero integer. As before, take the base space M to be S3

modulo the equivalence relation (38), so M = S2, but now take the total space E
to be S3 modulo the equivalence relation (39). Then E is still a three-dimensional
manifold, but it is distinct from S3 unless n = ±1.37 As before, define the the
bundle projection p : E →M by

p(z, w) = [z, w]M . (40)

So far, this defines a fiber bundle whose fiber is diffeomorphic to U(1). To promote
it to a principal U(1)-bundle, we also need to specify the action of the group U(1)
on the total space E. The action is38

[z, w]E × λ = [λ1/nz, λ1/nw]E. (41)

Equation (41) is where the sign of n becomes important. When n is negative,
equation (41) may be rewritten using the identity λ1/n = λ̄1/|n|, where λ̄ is the
complex conjugate of λ.

37For |n| ≥ 2, the resulting manifold E is called a lens space (Albers et al (2023), beginning of section 3; Martelli
(2016), section 3.4.10)

38When n > 0, λ has n different nth roots that differ from each other by factors of e2πi/n, but equation (41) is
still unambiguous thanks to the equivalence relation (39).
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23 Generalization to any n 6= 0: local trivializations

The goal is to show that the principal U(1)-bundle constructed in chapter 22 has
total flux 2πn. As a step toward that goal, this chapter constructs local trivializa-
tions.

Let U1 be the chart that includes all of the base space except the single point
[0, w]M , and let U2 be the chart that includes all of the base space except the single
point [z, 0]M . Just like before, we can use the real and imaginary parts of the ratio
z/w as coordinates for U1, and we can use the real and imaginary parts of the ratio
w/z as coordinates for U2. This works because factors e2πik/n on the left-hand side
of (39) cancel each other in these ratios.

Using the coordinate systems defined above to label points of U1 and U2, the
map

[z, w]E 7→
(
z/w, wn/|w|n

)
∈ U1 × U(1) (42)

is a local trivialization for the part of the bundle over U1, and the map

[z, w]E 7→
(
w/z, zn/|z|n

)
∈ U2 × U(1) (43)

is a local trivialization for the part of the bundle over U2. The n-dependence of
these maps ensures that they respect the equivalence relation (39) and that they
are U(1)-equivariant.39 When n is negative, we can rewrite the map (42) using the
identity (w/|w|)n = (|w|/w̄)|n|, and similarly for (43). Local trivializations must be
invertible, and the inverses of the maps (42)-(43) are40

τ1(u, f) =
[
uf 1/n/c, f 1/n/c

]
E

c ≡
√
|u|2 + |f 1/n|2 (44)

and

τ2(u, f) =
[
f 1/n/c, uf 1/n/c

]
E

c ≡
√
|u|2 + |f 1/n|2, (45)

respectively.
39Article 70621
40The functions (44)-(45) are unambiguous, because for n > 0, the various nth roots of f ∈ U(1) are related to

each other by factors of e2πi/n, and the equivalence class [·, ·]E is immune to these factors.
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24 Generalization to any n 6= 0: transition function

Chapter 23 constructed two local trivializations, one over the chart U1 and one over
the chart U2. Where the charts overlap, the local trivializations are related to each
other by a transition function.41,42 The transition function T is defined by41

τ1(u, f) = τ2

(
u, T (u)f

)
(46)

for all u ∈ U1 ∩ U2 and all f ∈ U(1).
Equations (42)-(45) use different coordinate systems to represent points of U1

and U2. That’s convenient for showing that the inverse maps (44)-(45) exist, but
it’s inconvenient for solving equation (46). To facilitate solving equation (46), write
the local trivializations (42)-(43) like this instead:

τ−1
1 : [z, w]E 7→

(
[z, w]M , w

n/|w|n
)

(47)

τ−1
2 : [z, w]E 7→

(
[z, w]M , z

n/|z|n
)
. (48)

Use these to write (46) as

τ1

(
[z, w]M , w

n/|w|n
)

= τ2

(
[z, w]M , Tw

n/|w|n
)
.

Compare this to the identity

τ1

(
[z, w]M , w

n/|w|n
)

= [z, w]E = τ2

(
[z, w]M , z

n/|z|n
)

to deduce

T
(
[z, w]M

)
=

(z/w)n

|z/w|n
. (49)

41Article 70621
42Some authors call it a clutching function or clutching map, including Husemoller (1966) and Cohen (2023).

The construction of a bundle over Sn from two patches is sometimes called a clutching construction (Husemoller
(1966)).
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25 Generalization to any n 6= 0: total flux

Now let’s calculate the total flux, using the approach described in chapter 20. Let
ω be an arbitrary connection, and let σ1 and σ2 be local sections over the charts U1

and U2, respectively. Chapter 21 already determined that the total flux will turn
out to be independent of the connection ω and of the local sections σ1 and σ2, so
let’s choose the local sections to make the calculation easy: take σ1(u) = 1 for all
u ∈ U1, and take σ2(u) = 1 for all u ∈ U2.

The corresponding local potentials are −iσ∗1ω and −iσ∗2ω. Equation (37) ex-
presses the total flux in terms of the gauge transformation that converts one of
these local potentials to the other. If we use the local sections specified in the
previous paragraph, then this gauge transformation is the same as the transition
function (49).43 The function (49) may also be written

T
(
[z, w]M

)
= einθ with eiθ ≡ z/w

|z/w|
. (50)

To calculate the total flux, take the loop γ in equation (37) to be the equator
|z/w| = 1 of the base space M = S2. Going once around the equator corresponds
to going from θ = 0 to θ = 2π, so the phase of the transition function goes from
nθ = 0 to nθ = 2πn. Use this in equation (37) to deduce that the total flux is 2πn.
This works for every nonzero integer n 6= 0.44 The case n = 1 is the Hopf bundle
that was the focus of most of this article.

43This is true no matter what local sections we use, because the integral of the local potential around a closed
loop in U1 or U2 is independent of the local section (chapter 17).

44Equation (41) says that changing the sign of n corresponds to reversing the orientation of the action of the group
U(1), which changes the sign of the total flux.
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