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The Core Principles of Quantum
Theory and the Nature of

Measurement
Randy S

Abstract Quantum theory is the foundation for our current understanding of
most natural phenomena. The core principles of quantum theory, namely Born’s
rule and the state-update rule, revolve around measurement. The distinction
between measured and not measured is unavoidably fuzzy in principle (even if
it is clear enough in practice), but using quantum theory requires drawing that
line somewhere. That situation is called the measurement problem. This
article introduces the core principles of quantum theory with emphasis on their
relationship to the physical process of measurement.

To help clarify the content of the core principles, an observable is represented
by a set of projection operators representing the possible outcomes when the
observable is measured, and states (which are used to tell quantum theory what
we know so far about the system’s history) are represented by positive linear
functionals on the algebra of observables.
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1 Introduction

The models currently used in physics can be organized into two categories, differing
from each other in the way they treat observables (things that can be measured
in a single measurement event):1

• In classical models, all observables are assumed to be compatible with each
other, so we can treat all of the model’s observables as having well-defined
values whether or not they are being measured.

• In quantum models, many observables are not compatible with each other,
and they can’t all have well-defined values when they’re not being measured.2

The way classical models treat observables might seem consistent with everyday
experience, but everyday experience is only a small subset of everything we want to
understand about nature. The most accurate and comprehensive models we have
today are based on the general principles of quantum theory.3

The statement that two observables are not compatible with each other is
stronger than the statement that two measurement processes are not compatible
with each other. Measurement is a physical process, and clearly some physical
processes are not compatible with each other even if they are individually allowed.
Still, any given observable can be measured in many different ways, so we might
expect that we could always find mutually compatible ways of measuring any given
set of observables. In quantum theory, observables themselves can be incompati-
ble with each other, so every way of measuring one of them is incompatible with
every way of measuring the other one, unless we compromise the quality of the
measurements (section 22).

1The word observable is often used more broadly, to include things like correlation functions whose measurement
requires multiple measurement events, but that’s not how I’m using the word here. The thing that I am calling a
measurement event corresponds to what Peres (2002) calls a test and to what Kraus (1983) and Ludwig (1983) call
an effect. It is usually just called a measurement.

2This is the significance of the Kochen-Specker theorem (article 77228).
3Quantum theory includes quantum field theory as a special case (article 21916).
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2 Observables

To represent observables mathematically, we can start with a Hilbert space H
(article 90771). A property that the system could have is represented by a projec-
tion operator4 P on the Hilbert space H. The complementary projection operator
1 − P represents the opposite property. The pair {P, 1 − P} is an example of an
observable. The projection operators P and 1−P represent the possible outcomes
when this observable is (perfectly) measured. More generally, a list of projection
operators

{P1, P2, P3, ...} (1)

satisfying ∑
n

Pn = 1 (2)

can be used to represent an observable. The projection operators Pn represent
the possible outcomes when this observable is (perfectly) measured. Article 74088
shows that the condition (2) implies

PjPk = 0 if j 6= k. (3)

In words, these projection operators are orthogonal to each other.5

Different formulations of quantum theory handle time in different ways (article
22871). This article uses the Heisenberg picture, in which all time-dependence
is carried by the observables. In the Heisenberg picture, the “same” observable at
different times is represented by different operators.6

4Recall that a projection operator P is an operator that equals its own adjoint and equals its own square. In
this article, operator always means a linear operator on the Hilbert space – but see footnote 11 in section 5.

5Quantum theory uses a separable Hilbert space, in which any set of mutually orthogonal nonzero projection
operators must be countable (Debnath and Mikusiński (2005), theorem 3.4.25). Observables with a continuum of
possible outcomes can also be defined, but they can only be imperfectly measured.

6In quantum field theory (article 21916), the “same” observable in different places is likewise represented by
different operators. The Heisenberg picture treats space and time similarly, so it is natural in relativistic models.
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3 Packaging an observable as a single operator

An observable with a countable list of possible outcomes can be represented by a list
of projection operators Pn that sum to 1, as in the previous section. Each of those
projection operators represents one of the possible outcomes when that observable
is measured. For convenience, we can represent an observable as a single self-adjoint
operator instead:

A = a1P1 + a2P2 + a3P3 + · · · , (4)

where the coefficients an are distinct real numbers. Article 74088 shows that the
projection operators Pn can be recovered from the single operatorA, so we don’t lose
any information by using the single operator A to represent the observable. We can
think of the coefficients an as labels for the different possible outcomes. Different
choices of the labels an give different representations of the same observable, because
a measurement still has the same list of possible outcomes, represented by the same
projection operators Pn. Only the labels are different.7

Assigning distinct numeric labels (an) to the different possible outcomes (Pn)
can be convenient for at least two reasons. First, this enables using numeric mea-
sures like the mean and variance when describing the distribution of measurement
outcomes. Second, sometimes the same operator also plays another important role
in the model, a role for which the values of the coefficients do matter. In particular,
operators that generate symmetries are often also used as observables. Examples
include the operators that generate translations in time, translations in space, and
rotations, which are (by definition) the operators that represent energy, momen-
tum, and angular momentum, respectively. In such cases, thinking of those same
special coefficients as part of the definition of the observable is natural, even though
the coefficients are not needed for the general principles introduced in this article.

7Some textbooks assert that the outcome of a measurement is one of the coefficients an. They really just mean
that the measurement device can be designed so that it displays the number an when the outcome Pn is obtained.
Given any such device, we can modify it to display a different number a′n when the outcome Pn is obtained, but it’s
clearly still measuring the same physical observable.
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4 States

To specify a model, we specify its observables. To apply a model, we need to tell
quantum theory what we know about the system’s physical state – what we know
about how the physical system was prepared.8 We can do this by specifying a
normalized positive linear functional, also called a state because of how it’s
used in quantum theory. Using the word state as a synonym for normalized positive
linear functional is common in the math literature. State and observable are two
examples of words that are used both for a purely mathematical entity and for the
non-mathematical thing that it’s used to represent.

Mathematically, a state ρ is a function that can take any operator A as input
and returns a complex number ρ(A) as output, subject to the conditions shown in
article 77228. Those conditions imply

0 ≤ ρ(P ) ≤ 1 (5)

for any projection operator P .
For any state ρ(· · · ) and any operator M such that ρ(M ∗M) 6= 0, we can

construct another state like this:9

ρ(· · · |M) ≡
ρ(M ∗ · · ·M)

ρ(M ∗M)
, (6)

where M ∗ denotes the adjoint10 of M . The construct (6) plays an important role
in the following sections.

8For readers who know what ψ-ontic and ψ-epistemic mean: I’m not committing to either of those types of
interpretation here. When I say that a state represents what we know, I am simply describing how quantum theory
is actually used, without presuming that it is or isn’t “complete.”

9The notation ρ(· · · |M) isn’t standard, but it’s useful. It is deliberately similar to the standard notation for a
conditional probability, which is related to how the construct (6) is used in quantum theory.

10This notation for the adjoint of M is common in the mathematics literature. In the physics literature, it is more
commonly denoted M†.

7



cphysics.org article 03431 2024-12-23

5 Using a Hilbert space to construct states

The general concept of a state (a normalized positive linear functional) does not
rely on a Hilbert space.11 In practice, though, a state is usually expressed like this:

ρ(A) =

∑
n〈n|A|n〉∑
n〈n|n〉

(7)

for all operators A, where |1〉, |2〉, ... is some list of nonzero vectors in the Hilbert
space on which the operators act. This can also be written ρ(A) = trace(Aµ),
where12

µ ≡
∑

n |n〉 〈n|∑
n〈n|n〉

is called the density matrix.13 The vectors |n〉 don’t need to be orthogonal to
each other, and they don’t need to be unit vectors.

The simplest case is

ρ(A) ≡ 〈ψ|A|ψ〉
〈ψ|ψ〉

, (8)

using just one vector. In this case, the vector |ψ〉 is called the state-vector. If the
original state has the form (8), then replacing

ρ(· · · )→ ρ(· · · |M)

is equivalent to replacing
|ψ〉 →M |ψ〉.

11Witten (2022) illustrates the value of this generality.
12The notation in the numerator is common in the physics literature, but this article doesn’t use it, so I won’t

bother defining it.
13The density matrix is often denoted ρ, which should not be confused with the (closely related) way I’m using

the symbol ρ in this article.
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6 The nature of quantum theory’s predictions

When two observables are measured sequentially, the outcome of the second mea-
surement typically cannot be predicted with certainty, no matter how carefully we
try to prepare the system the same way every time. Sometimes we can attribute
this apparent unpredictability to microscopic details that we know are beyond our
control, but the observed violations of Bell inequalities (article 70833) teach us
that some unpredictability cannot be explained in conventional ways.

Instead of trying to predict individual outcomes, quantum theory assigns prob-
abilities to each of the possible outcomes.14,15 The next section introduces the rules
governing these assignments.

Quantum theory is testable even though it “only” assigns probabilities, because
assigning probabilities to the outcomes of individual trials is effectively equivalent
to predicting the distribution of outcomes in a large number of trials. Here’s an
example to illustrate the equivalence. Suppose we repeat an experiment a million
times (a million trials). The outcome of each trial can be either X or Y . Even
if we cannot predict which one of these will occur in a given trial, we might still
be able to say something about the relative proportions of X and Y outcomes in a
million trials. If quantum theory assigns probabilities 0.3 and 0.7 to the outcomes
X and Y , respectively, then it is effectively assigning a probability very close to 1
to the collective possibility that the proportions of outcomes X and Y will be very
close to 30% and 70% in a million trials. Assigning a probability very close to 1
is equivalent to making a prediction. In this practical sense, saying that quantum
theory assigns probabilities to individual outcomes is equivalent to saying that it
predicts the distribution of outcomes over a sufficiently large number of trials.

14I’m using the word probability in the Bayesian sense. For an unpolished but still excellent introduction to
probability theory, see Jaynes (2003). It’s unpolished because the author died before it was finished.

15In some cases, like when measuring the location of a macroscopic object, quantum theory does predict the
individual outcome, because the probability assigned to one (very narrow range of) outcome(s) is very close to 1.
Quantum theory is consistent with the reproducible aspects of everyday experience.
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7 Born’s rule and the state-update rule

At its core, quantum theory has two rules. Expressed in the Heisenberg picture,
the rules are:

• Born’s rule. If we start with a state ρ, and if P represents one of the possible
outcomes of the next measurement, then ρ(P ) is the probability that quantum
theory assigns to this outcome. This is consistent with (5).

• The state-update rule. If a measurement has occurred, and we know that
the outcome is P , then we should replace the original state ρ(· · · ) with the
new state ρ(· · · |P ), as defined in (6).16 This new state is then used to apply
Born’s rule to the next measurement.

The state-update rule assumes that the measurement is perfect – that is, it perfectly
resolves all of the possible outcomes from each other. Section 14 explains how to
handle imperfect measurements.

Here are some easy consistency checks:

• The condition (2) implies
∑

n ρ(Pn) = 1, so exactly one of the outcomes in
(1) will occur.

• Equation (3) implies ρ(Pj|Pk) = 0 if j 6= k. Interpreting Pj and Pk as
mutually exclusive outcomes is consistent with this.

To motivate the notation (6), notice what happens when we iterate these rules.
If P represents the outcome of the measurement that was just completed, and if
another projection operator Q represents one of the possible outcomes of the next
measurement, then the rules shown above say that the probability of this outcome
is ρ(Q|P ). This is deliberately similar to the standard notation for a conditional
probability. Article 77228 shows that the condition ρ(P ) = 1 is equivalent to
ρ(· · · ) = ρ(· · · |P ), so saying that the outcome P is certain to occur is the same as
saying that the state is already conditioned on that outcome.

16We don’t need to worry about the fact that the denominator of ρ(· · · |P ) is zero when ρ(P ) = 0, because Born’s
rule says that the outcome P doesn’t occur unless ρ(P ) > 0.
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8 From general principles to specific models

The principles introduced in in section 7 are very general. To apply them, we need
to specify a model: we need to specify what the physical observables are and which
operators are used to represent them.17 Many different models are used, ranging
from nonrelativistic single-particle quantum mechanics to relativistic quantum field
theory.18 Most models have several approximations or other limitations built into
them. That makes the math easier. Some models, such as the Standard Model of
particle physics, encompass most of what we currently know about nature. The
principles in section 7 apply to all of these models. Examples of specific models
will be introduced in separate articles.

17I’m using the word model the way it’s used in names like “the Standard Model of particle physics.” The word
theory is often used the same way. Sometimes the word model may refer also to a specific state in addition to the
collection of observables.

18Sometimes the name quantum mechanics is used a synonym for quantum theory, but sometimes quantum me-
chanics is used with a more specific connotation, similar to the usual distinction between classical mechanics and
classical field theory.
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9 Incompatible observables

This section illustrates the fact that in quantum theory, some observables are not
compatible with each other: they cannot be measured simultaneously.

Suppose that all observables are represented as operators on a given Hilbert
space H. Consider a state of the form (8) and two observables of the form

A = a1P1 + a2P2 + a3P3 + · · ·
B = b1Q1 + b2Q2 + b3Q3 + · · · ,

where the Pks are mutually orthogonal projection operators, and so are the Qks.
Suppose that (AB − BA)|ψ〉 6= 0 for all nonzero vectors |ψ〉 ∈ H. According to
the state-update rule, if both observables are measured, with outcomes Pj and
Qk, respectively, then the original state-vector |ψ〉 should be replaced with either
PjQk|ψ〉 or QkPj|ψ〉, depending on which observable is measured first. If they’re
measured simultaneously, then the result should be the same either way. That
would imply (AB −BA)|φ〉 = 0 with |φ〉 ≡ PjQk|ψ〉 = QkPj|ψ〉, which contradicts
our assumption that AB−BA doesn’t annihilate any vectors. This indicates19 that
two such observables cannot be measured simultaneously.

19This argument only considers states of the form (8) in one Hilbert-space representation, even though a given
operator algebra may admit many inequivalent Hilbert-space representations.
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10 Choosing the initial state

To use Born’s rule, we need to specify a state (section 4). How do we decide
which mathematical state we should use to represent what we know about how the
physical system was prepared? The answer is to use the state-update rule.

Here’s how it works. Make a list of properties that we know the system had.
We can represent this knowledge using a list of projection operators, because any
potentially-observable property is represented by a projection operator. Starting
with the arbitrary state χ(· · · ), apply the state-update rule for each one of the
projection operators in this list, in chronological order,20 just like we would if those
properties were known from the outcomes of a sequence of deliberate measure-
ments. If the outcome of the first “measurement” was P , then the state-update
rule tells us to replace χ(· · · ) with χ′(· · · ) ≡ χ(· · · |P ). If the outcome of the second
“measurement” was Q, then the state-update rule tells us to replace χ′(· · · ) with

χ′′(· · · ) ≡ χ′(· · · |Q) = χ(· · · |QP ).

And so on. We just keep iterating the state-update rule until we’ve accounted for
everything we already know that might be relevant for making predictions about
subsequent measurements of interest. The result will be a state of the form21

ρ(· · · ) = χ(· · · |A), (9)

where A is the relevant product of projection operators:

A ≡ · · ·QP. (10)

The state (9) the initial state we use when applying Born’s rule to the measurement
of interest. If the list of projection operators in A is complete enough – that is, if we
know enough about how the system was prepared – then the probabilities assigned
by Born’s rule will depend only on the product (10) of projection operators, not
on the arbitrary state χ, at least for the measurement of interest.

20The condition “in chronological order” is important because the operators don’t necessarily commute with each
other.

21This state is well-defined as long as the denominator χ(A∗A) is not zero. This is the only restriction on χ.
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11 Choosing the initial state, more generally

Since quantum theory’s predictions are probabilistic anyway, we might as well
generalize the preceding construction to cases where we’re not sure exactly how the
physical system was prepared. Instead of a single product of projection operators
as in (10), we can consider several different products An of projection operators,
each of which represents a possible preparation. If p(n) denotes the probability we
assign to the nth possibility,22 with

∑
n p(n) = 1, then we can take the state to be

ρ(· · · ) =
∑
n

χ(· · · |An)p(n) (11)

for arbitrary χ.
To check that the formula (11) is consistent with the principles introduced in

section 7, suppose that the Ans differ from each other only in the outcome of the last
measurement in the sequence, so An = PnA for some list of projection operators Pn
with

∑
n Pn = 1. Suppose that we don’t know the outcome of that last measurement

because it hasn’t occurred yet. If we use the state (11) to represent this situation,
then the probabilities that Born’s rule assigns to the possible outcomes of the last
measurement – the one that hasn’t occurred yet – are

ρ(Pj) =
∑
k

χ(Pj|Ak)p(k) =
∑
k

χ(Pj|PkA)p(k) = p(j),

because the orthogonality of the Pns implies χ(Pj|PkA) = δjk for any χ and any
A. Altogether, using the state (11) to represent this situation ensures that the
probabilities ρ(Pj) assigned by Born’s rule will be consistent with the probabilities
p(j) that we already assigned.

22I’m using the letter p for these probabilities instead of the Greek letter ρ, because these probabilities don’t
necessarily come from Born’s rule. We can’t use Born’s rule until after we’ve chosen the initial state.
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12 Practical irreversibility in closed systems

In addition to specifying a model (section 8), we also need to specify a state (sections
10-11). Even if we’re using a relatively comprehensive model, like one that is
capable of describing something as complex as an oak tree with a subatomic level
of detail, we might still choose a state that represents something relatively simple,
like one or two electrons. Much of the subject called particle physics focuses on
relatively simple states, even though the model may be relatively comprehensive.

In contrast, most familiar phenomena involve situations that are very complex,
at least on a microscopic scale. Such complexity can lead to phenomena that
are practically irreversible, even if the laws that govern them are fundamentally
reversible. This is important for describing measurement as a physical process
(sections (14)-(18)), at least if we’re modeling a closed system, one that neither
influences nor is influenced by anything outside of itself. The physical process
of measurement can be described by using a state that includes the microscopic
details of the measuring equipment – probes, recording devices, and so on – as
part of the overall closed system. The complexity of the microscopic details can
lead to phenomena that are practically irreversible, as required by the definition of
measurement (section 14).

Much of this article is written with complex states in mind, because one of the
central themes in this article is how the principles introduced in section 7 relate
to the physical process of measurement. The principles in section 7 don’t require
treating measurement as a physical process within the model itself, but doing so
can hep us understand why quantum theory works so well.

15



cphysics.org article 03431 2024-12-23

13 The measurement problem

The principles introduced in section 7 are the foundation for the most accurate
and comprehensive models of nature that we have ever had, so the fact that they
refer only to measurement outcomes might seem strange. Shouldn’t any good
theory describe what happens between measurements, too? One way to answer
that question is: why should it? The only predictions that matter are the ones we
can test, and we can only test the things we can observe (measure). Whatever a
theory might say about what happens between measurements can only be tested
indirectly, through whatever effects it has on eventual measurements.

In quantum theory, we can’t pretend that observables have perfectly well-defined
values if they’re not actually measured, because observables are not all compatible
with each other (section 9). This leads to an ambiguity called the measurement
problem: to use quantum theory correctly, we need to know which observables
are actually measured, but a completely natural and unambiguous definition of
measured cannot exist! Measurement is a physical process, and distinguishing it
from other physical process requires making arbitrary choices – like the arbitrary
choices we make to define the difference between rivers and streams.

The measurement problem is not specific to quantum theory. The root of the
problem comes from the fact that measurement is itself a physical process and is
also our only means of testing predictions about physical processes. Peres (2002)
said it this way:23

In every physical situation something must remain unanalyzed. This is
not a flaw of quantum theory, but a logical necessity in a theory which
is self-referential and describes its own means of verification.

Even though it might be troubling in principle, measurement problem doesn’t
cause much trouble in practice. This is the subject of sections 14-18 and 22.

23Peres (2002), page 173
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14 What is measurement?

How do we know which observables are measured? It’s ambiguous, because mea-
surement is a type of physical process that doesn’t have any perfectly natural and
unambiguous definition. But “river” doesn’t have any perfectly natural and un-
ambiguous definition, either, and that doesn’t prevent it from being a useful and
important concept. We can adopt the same attitude about measurement: it has a
useful definition, even though it’s technically ambiguous. Here’s one way to say it:

A measurement that distinguishes between two possibilities,
x and y, is a physical process in which the rest of the system
is affected in different ways by x and y, and the difference is
practically irreversible.

Example: we can measure the location of an object by shining light on it and
recording the reflected light with a camera. In this example, the object’s location
affects the pattern of light recorded by the camera, and the difference between the
effects caused by different locations is practically irreversible.24

In everyday language, we normally reserve the word measurement for processes
that provide useful information to people. The definition highlighted above removes
that anthropic flavor: it doesn’t refer to people, or to any other sentient beings.
People use measurements, but measurements don’t need people. Measurements as
defined above are happening naturally all the time. This is part of why classical
models tend to work well in macroscopic applications (section 22).

The definition highlighted above is ambiguous, partly because of the ambiguous
words practically irreversible. This ambiguity cannot be eliminated without choos-
ing artificial thresholds. The definition is good enough to be useful, though, because
a high-quality measurement is like what happens when we pop a balloon: once the

24It’s still practically irreversible even if the record that the camera forms is melted or pulverized, because the
microscopic details of the final state of the rubble (and of the environment) still depend on the original state of the
record.
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process is initiated, it progresses so rapidly and so prolifically that we could not
reverse it even if we wanted to. For most practical purposes, the difference between
popping and not popping a balloon is unambiguous.

The principles in section 7 directly apply only to high-quality measurements
that resolve all of the possible outcomes from each other with essentially no overlap.
These are often called sharp measurements. Many realistic measurements are not
sharp, because they have limited resolution, but the principles in section 7 are still
sufficient if we treat unsharp measurements as indirect measurements. This works
because the result of an unsharp measurement is typically “read out” using another
measurement (such as by observing a digital display) that has only a finite set of
easily-distinguishable possible outcomes. The principles in section 7 can be applied
to this sharp measurement.

18
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15 Accounting for measurement: two approaches

Measurement is a physical process. The act of measurement has consequences,
even if we ignore the outcome. We can account for this in either of two ways:

• The natural approach:25 We can use a model that encompasses the com-
plex microscopic details of the physical measurement equipment, and we can
use a state that accounts for the initial physical configuration of those things,
all as part of one large closed quantum system. Then the measurement is
a physical process that occurs within the model itself, just like any other
physical process within the model’s scope.

• The artificial approach:26 We use a model or state that is too simplistic to
describe measurement as a physical process.27 When a measurement occurs
in the real world, we modify the state by hand.

In both approaches, quantum theory doesn’t predict which measurement outcome
we will actually experience (except when Born’s rule assigns a probability very
close to 1 to one of these outcomes), so we still need to use the state-update rule
to account for that. One advantage of the natural approach is that if we don’t
want to condition future predictions on the outcome of one measurement, then
we don’t need to use the state-update rule for that measurement. We can treat
that measurement as a physical process to be studied via later measurements,
applying the state-update rule to them instead. Another advantage of the natural
approach is that even when we do use the state-update rule, we don’t need to rely
on any unmodeled information to tell us when a measurement has occurred: we can
diagnose the occurrence of a measurement within the model itself, using a principle
that will be described in section 17. The disadvantage of the natural approach is
that it is usually too difficult. To make calculations easier, we normally use the
artificial approach instead.

25Sections 16-18
26Sections 19-21
27Few-particle models, like the ones often used to introduce quantum theory, are in this category.
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16 Observables and complexity

Section 17 will explain how the definition of measurement in section 14 can be
formulated mathematically when the natural approach is used. That formulation
relies on the idea that many of the operators that we might designate as observables
are not practically measurable, because they are too complex. We might imagine
doing a double-slit interference experiment using the whole earth as the “particle,”
but such an experiment will never actually be feasible.28

Conversely, if an operator O represents an observable that is simple enough to
measure in practice, thenO cannot mix two states that differ from each other in very
complicated ways (as quantified by other observables associated with the same time
as O).29 More precisely: if two state-vectors |1〉 and |2〉 represent configurations
that differ from each other in very complicated ways according to observables at
time t, and if Ω is the set of operators representing observables that we could
realistically measure at time t, then the inner product of P |1〉 and P |2〉 is practically
zero (compared to the norms of |1〉 and |2〉) whenever P is a projection operator
from Ω.

Many researchers have used this too-complex-to-measure idea as an input, at
least implicitly, even though very few have quantified the idea itself.30 I’ll do the
same thing in section 17: I’ll use the idea as an input, but I won’t try to quantify
the idea or to deduce it from any other principles.

28Omnès (1994) describes a quantitative example on pages 308-309 to explain why the word never is justified:
such an experiment would require more resources than the entire known universe can provide. Aaronson et al (2020)
derives a general theorem that relates the difficulty of detecting interference between two states to the difficulty of
transforming one state to the other. This theorem doesn’t preclude experiments like the one reported in Bild et al
(2023), because in that experiment, the two terms in the superposition are easy to transform into each other.

29Remember that we’re using the Heisenberg picture, so the “same” observable is represented by different operators
at different times, and the same operator can represent different observables at different times.

30It might start to get more quantitative attention because of its role(s) in quantum gravity research. Papers that
mention such a connection include Susskind (2013) (in section 2.3) and Balasubramanian et al (2005). Further ideas
about the role(s) of complexity in quantum gravity are highlighted in Susskind (2018) and Susskind (2019).
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17 Recognizing the occurrence of a measurement

This section explains how the definition of measurement in section 14 can be for-
mulated mathematically when the natural approach is used (section 15). Let

A ≡ {P1, P2, ..., PN} (12)

be a set of mutually orthogonal projection operators representing an observable
that could be measured at time t = 0. Whether it will actually be measured
depends on what initial state we choose.31

The occurrence of the measurement shouldn’t depend on the detail to which
the observable A is sensitive, because the measurement is supposed to resolve that
detail. To determine whether A is measured, we need to compare what happens
for N different initial states, differing from each other only in that detail. To do
this, consider a collection of state-vectors |k〉 satisfying

Pk|k〉 = |k〉, (13)

which implies 〈j|k〉 = 0 whenever j 6= k, because the Pks are orthogonal to each
other. For convenience, take them to be unit vectors:

〈k|k〉 = 1. (14)

The key is to suppose that they all represent almost the same physical situation
as far as observables associated with times t ≤ 0 can tell, except for the detail to
which the observable A is sensitive.32

31It might not be measured if the initial state represents a configuration in which the measuring equipment is
absent or broken!

32For this to make sense, the subspaces PnH of the Hilbert space H must each be many-dimensional. (In a model
like QED+QCD, they are all infinite-dimensional.) These are the observable’s eigenspaces. Observables whose
eigenspaces are one-dimensional might be reasonable in simple models that don’t include things made of jillions
of molecules, but measuring an “observable” with one-dimensional eigenspaces is not feasible in any model that is
comprehensive enough to include things made of jillions of molecules.
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What is the effect of measuring the observable A? Let Ω be the set of operators
representing observables that we could realistically measure at times after the A-
measurement event.33,34 Saying that A has been measured means that the feature
to which A is sensitive has left a practically irreversible imprint on the rest of the
system, so that the N vectors |k〉 all differ from each other in hopelessly complicated
ways with respect to observables at times after the measurement event.35 According
to the idea reviewed in section 16, this means∣∣〈j|Q|k〉∣∣2 ≪ 1 for j 6= k (15)

for all projection operators Q in Ω.36 This is the condition that the observable
(12) should satisfy if it has been measured.37 The quality of the approximation
(the degree to which 〈j|Q|k〉 is negligible when j 6= k) reflects the quality of the
measurement.

Now consider a state of the form (8) where |ψ〉 is a superposition (linear
combination) of the vectors |k〉:

|ψ〉 =
∑
k

zk|k〉. (16)

The condition (15) implies38∣∣ρ(PjQPk)
∣∣2 ≪ ρ(Pj)ρ(Pk) for j 6= k (17)

33Real measurements have a finite duration, but the duration may be very short, even for non-deliberate measure-
ments. This is quantified in Zurek (2003) and Tegmark (2000).

34Remember that we’re using the Heisenberg picture: observables at different times are represented by different
operators.

35Page 74 in Zeh (1970), Peres (1980), Lloyd (1988), section 3 in Banks et al (2002), Banks (2009)
36Instead of imposing this condition only for individual projection operators, we could impose it for time-ordered

sequences of projection operators (replacingQ withM∗M , whereM is a time-ordered sequence of projection operators
from Ω, as in section 10), but the single-projection version is simpler and probably strong enough already.

37Bell (2004) describes a simple (but contrived) example, emphasizing that (15) can only hold for a limited set Ω
of observables.

38The condition |x|2 ≪ 0 is understood to mean x = 0.
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for all states of the form (16), for all projection operators Q ∈ Ω. We can use
this as a more general way of expressing the definition of measurement, for states
that are not necessarily of the form (8), but we need to be careful: checking the
condition (17) for a single state ρ is not enough.39 The definition of measurement
involves a comparison. We need to consider at least N states that differ from each
other in the detail to which the observable (12) is sensitive, because we need to
determine whether the rest of the system is affected in different ways by different
configurations of that detail.

This formulation is more explicit than the verbal definition that was highlighted
in section 14, but it’s still ambiguous: the approximations are unquantified, and the
scope of Ω is only vaguely defined. In models that use a finite-dimensional Hilbert
space,40 this formulation also has another ambiguity, because then the Poincaré
recurrence theorem says that history must eventually essentially repeat itself.41

That creates an ambiguity because the definition of Ω refers to observables in the
future of the A-measurement event. If Ω also included all realistically measurable
observables from the past of the A-measurement event, then the criterion (15)
would be too strong – it would not be satisfiable. To use the criterion (15) in such
a model, we need to choose yet another artificial threshold to specify how far into
the future the set of “future” observables Ω should go, so they don’t wrap around
into the (recent) “past.” This is another facet of the measurement problem that
was highlighted in section 13.

In spite of those ambiguities, the formulation described in this section can help
us understand why quantum theory is so robust. The next section explains how.

39To see this, suppose ρ(· · · ) = χ(· · · |P1) for an arbitrary state χ. This one state ρ satisfies the condition (17),
but for a trivial reason: the projection operators Pk are mutually orthogonal.

40Banks (2001) indicates that if the universe is asymptotically like de Sitter spacetime (which seems to be the
case), then the Hilbert space should be finite-dimensional.

41Banks et al (2002), Bousso and Susskind (2012)
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18 A consequence of measurement

Measurement is a physical process. The act of measurement has consequences,
even if we ignore the measurement’s outcome – that is, even if we don’t use the
state-update rule to tell the theory which outcome we experienced. In the natural
approach, those consequences occur automatically, within the model itself. We
don’t need to put them in by hand.42

To see how this works, start with equation (17), which may also be written∣∣ρ(PjQPk)
∣∣2 ≈ 0. This implies∑

j,k

ρ(PjQPk) ≈
∑
k

ρ(PkQPk) (18)

for all Q ∈ Ω. The left-hand side is equal to ρ(Q), and the right-hand side is equal
to
∑

k ρ(Q|Pk)ρ(Pk), so equation (18) may also be written

ρ(Q) ≈
∑
k

ρ(Q|Pk)ρ(Pk) (19)

for all Q ∈ Ω. This is a nontrivial condition: for most projection operators and
most states, the left- and right-hand sides of (19) are not equal to each other,
not even approximately.43 In the natural approach, equation (19) is a necessary
condition for the observable (12) to qualify as having been measured.

To appreciate the significance of the condition (19), recall Bayes’ theorem.
Bayes’ theorem is a consequence of the standard rules for manipulating probabili-
ties.44 It says that if p(X) is the probability assigned to an event X, and if p(Y |X)
is the probability assigned to another event Y conditioned on the occurrence of X,
then

p(Y ) =
∑
n

p(Y |Xn)p(Xn) (20)

42In the artificial approach (section 19), we do need to put them in by hand.
43Example: choose vectors |n〉 so that Pn|n〉 = |n〉 and 〈n|n〉 = 1. Take Q to be the projection onto |q〉 ≡ |1〉+ |2〉,

and take ρ(· · · ) = 〈q| · · · |q〉/〈q|q〉. Then the left-hand side of (15) equals 1, but the right-hand side equals 1/2.
44Bayes’ theorem is a consequence of what Jaynes (2003) calls the product rule.
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for any set of mutually exclusive events Xn with
∑

n p(Xn) = 1. The principles
introduced in section 7 relate this to equation (19). Starting with a state ρ in which
the observable (12) will be measured, the principles section 7 say that ρ(Pn) is the
probability of outcome Pn and that ρ(Q|Pn) is the probability of Q conditioned on
the occurrence of Pn. According to Bayes’ theorem, if we don’t condition on the
outcome of the first measurement (the measurement of the observable (12)), then
the probability assigned to Q for the second measurement should be given by the
right-hand side of (19). Equation (19) says that this is practically equal to ρ(Q),
which is what we would have used as the probability of outcome Q according to
Born’s rule if we didn’t know that the observable (12) had been measured.

The important message here is that in the natural approach, the model it-
self knows that a measurement occurred, even if we don’t. More importantly, in
cases where the “measurement” has such low quality that we’re not even sure we
should call it a measurement, the model itself still properly accounts for its con-
sequences, however messy or difficult to characterize they might be, regardless of
where we might arbitrarily choose to draw the line between “measurement” and
“non-measurement.”

The natural approach doesn’t solve the measurement problem, though. Even
in the natural approach, we still need to use the state-update rule if we want
to condition future predictions on the outcome of a previous measurement. One
conceptual advantage of the natural approach is that we only need to do this
for sharp measurements, where the line is practically unambiguous, because the
model itself automatically accounts for how those outcomes are affected by any
intervening unsharp measurements. This helps explain why quantum theory is so
robust in spite of ambiguities in the definition of measurement.
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19 Sharp measurements in the artificial approach

Measuring something and then ignoring the outcome is different than not measuring
it at all. In the natural approach, the model itself knows the difference (section 18).
However, that requires using a model and a state that accounts for the microscopic
complexities of macroscopic objects like measuring devices.45 If we’re not doing
that, then we need to use the artificial approach instead.

For sharp measurements, the artificial approach is a straightforward applica-
tion of Bayes’ theorem. Consider a sequence of two measurements. The first one
has possible outcomes represented by projection operators {P1, P2, ...}. Another
projection operator Q represents a possible outcome of a second measurement.
Starting with the state ρ, the principles introduced in section 7 say that ρ(Pn) is
the probability of outcome Pn and that ρ(Q|Pn) is the probability of Q conditioned
on the occurrence of Pn. According to Bayes’ theorem, if we don’t condition on the
outcome of the first measurement, then the probability assigned to Q should be∑

n

ρ(Q|Pn)ρ(Pn). (21)

In the natural approach, this is practically equal to ρ(Q) (equation (19)). If we’re
using a model or state that doesn’t account for the physical process of measurement,
then the quantity (21) is generally not equal to ρ(Q), not even approximately,46 but
we can account for the occurrence of the first measurement artificially by replacing
the original state ρ(· · · ) with

ρ′(· · · ) ≡
∑
n

ρ(· · · |Pn)ρ(Pn) (22)

to enforce Bayes’ theorem, as in section 11.
45We often use simpler models that don’t have such states (footnote 27). A quantum field theory that includes

both electrons and quarks interacting via the electromagnetic and strong interactions is one example of a model that
does have such states, but explicitly constructing a state that describes macroscopic measuring devices in that model
is beyond our current abilities.

46Footnote 43 in section 18
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20 Unsharp measurements in the artificial approach

To handle unsharp measurements in the artificial approach, we have two options.
One option is to treat the unsharp measurement as a sharp measurement of a
coarser (less discriminating) observable. Suppose the original observable is repre-
sented by three projection operators {P1, P2, P3}. These are mutually orthogonal
(section 2), so the partial sum

P12 ≡ P1 + P2

is still a projection operator. A sharp measurement of the coarser observable
{P12, P3} can be interpreted as a measurement of the original observable that fails
to distinguish between P1 and P2. We can account for this by replacing

ρ(· · · )→ ρ(· · · |P12)ρ(P12) + ρ(· · · |P3)ρ(P3),

which is just (22) applied to the coarser observable.47 Most unsharp measurements
are not like this, though: they are unsharp in smoother ways that can’t be emulated
by a sharp measurement of a coarser observable.

To motivate a better approach, consider the effect of an indirect measurement
in a larger model, using the natural approach. To organize the explanation, let S(t)
denote the set of observables associated with the subsystem of interest (example:
a single atom) at time t, and let R(t) denote the set of observables associated
with the rest of the larger system at time t, which includes any measuring devices.
An unsharp measurement of an observable in S(0) can be treated as a physical
process whose effects can be probed using sharp measurements of observables in
R(t) at some later time t > 0, like digital readouts. Let Q1, Q2, ... be the projection
operators representing the possible outcomes of one of these later measurements.
If the outcome Qn is obtained, then we account for this by replacing

ρ(· · · )→ ρ(· · · |Qn), (23)

47Remember that ρ(· · · |P12)ρ(P12) is typically not equal to ρ(· · · |P1)ρ(P1) + ρ(· · · |P2)ρ(P2).
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where ρ is the initial state, as in section 19. The projection operators Qn belong to
R(t), not S(t), but the algebra generated by S(t) may include operators Mn that
satisfy48

ρ(QnAQn) ≈ ρ(M ∗
nAMn) for all A ∈ S(t) (24)

to a good approximation. The operators Mn are not necessarily projection opera-
tors, but they do satisfy this generalization of (2):49∑

n

M ∗
nMn = 1. (25)

When such operators exist, equation (24) implies that as far as the subsystem S is
concerned, the effect of the replacement (23) can emulated by the replacement

ρ(· · · )→ ρ(· · · |Mn). (26)

If we don’t want to condition on the outcome, then we use the replacement

ρ(· · · )→
∑
n

ρ(· · · |Mn)ρ(M ∗
nMn) (27)

instead. This generalizes (22).
Unlike the right-hand side of (23), the right-hand side of (26) involves only

operators associated with the subsystem S, so we can use (26) in a smaller model
that doesn’t include the rest of the larger system.50

48Preskill (2022) (summarized by equation 1.2 in Stelmachovic and Buzek (2001)), section II.D in Peres and Terno
(2004), section 4.1 in Vinjanampathy and Anders (2016), and Wolf (2012)

49Set A = 1 in (24) and use
∑

nQn = 1 to deduce
∑

n ρ(M∗nMn) = 1. If this were required to hold for all states ρ,
then it would imply (25). The state on the left-hand side of (24) is not arbitrary, because only in some states does
the measurement event actually occur. (That’s the point of the natural approach: measurement is a physical process
whose occurrence is contingent on the initial state, just like any other physical process.) However, on the right-hand
side of (24), the state is arbitrary as far as operators in the algebra generated by S(t) are concerned, because the
occurrence of the measurement is not contingent on the state of the subsystem of interest. This implies (25).

50Beware that the time-dependence of S(t) in the larger model is different than in the subsystem-only model,
because in the larger model, time evolution mixes the subsystem’s observables with observables from the rest of the
system.
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21 Generalized measurement

The operators Mn in equations (25)-(27) are called Kraus operators, and the
replacement (26) is called a generalized measurement. It reduces to the state-
update rule (section 7) when the Kraus operators are projection operators. The
terms M ∗

nMn in the sum (25) are positive operators (article 74088), and they are
collectively called a positive operator valued measure (POVM).

Introductions to generalized measurements often highlight something called
Naimark’s dilation theorem, which says that any generalized measurement
can be represented as a projective measurement in an enlarged system.51 How-
ever, the enlarged system promised by Naimark’s theorem is not meant to be (and
usually isn’t) a good model of any real larger system in which measurement can
be described as a physical process. Such a good model may exist, but Naimark’s
theorem doesn’t tell us how to find it, so Naimark’s theorem is not directly relevant
to the discussion in section 20. Introductions to Naimark’s theorem can still be en-
lightening, though, because they often include simple examples of how generalized
measurements can arise from projective measurements on a larger system, realistic
or not.52

The important message in section 20 is that the generalization (26) is a result,
not a postulate. It’s a way of compensating for the deficiencies of a model that
only knows about one relatively simple part of a complex physical system. We use
such deficient models to make the math easier. In principle, we could the natural
approach instead (section 15) – we could use a more comprehensive model in which
unsharp measurements can be described as physical processes whose consequences
are probed using subsequent sharp measurements, for which the rules in section 7
are sufficient.

51Peres (2002), section 9-6
52Footnote 48 in section 20
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22 Why classical models often work well

Measurements as defined in section 14 are happening naturally all the time.53 The
location of a macroscopic object is constantly being measured through its influence
on things like the ambient air, on the light from distant stars, and on the cosmic
background radiation.54 Even though observables are not all compatible with each
other, any two observables can be simultaneously measured with sufficiently low
quality.55 Relationships like the uncertainty principle can be used to quantify
how much the quality must be compromised to make the measurements compatible
with each other. Naturally occurring measurements tend to have coarse enough
resolution to be practically compatible with each other, even if the resolution is
still fine by macroscopic standards. This helps explain why classical models –
models in which all observables are compatible with each other – tend to be good
approximations for most macroscopic applications.

In particular, if ∆x and ∆p are the resolutions of measurements of an object’s
location and momentum, then those measurements can be practically compatible
with each other if they satisfy (∆x)(∆p) � ~, even though they would not be
compatible with each other if (∆x)(∆p) . ~.56 The location of a mote of dust of size
10−5 meter is constantly measured through its influence on the cosmic microwave
background, and Tegmark (1993) finds that the resolution of this measurement is
∆x ∼ 10−8 meter. That resolution may be fine by macroscopic standards, but it’s
coarse enough to be compatible with a momentum measurement whose resolution
∆p is also very fine by macroscopic standards.

53Sometimes the word measurement is reserved for deliberate measurements, I’m using the word for any physical
process that has the characteristics highlighted in section 14.

54This is studied quantitatively in Joos and Zeh (1985) and reviewed in Joos (1996), section 3.2. Schlosshauer
(2019) gives a more recent review with an extensive bibliography.

55An example is described in von Neumann (1955), section V-4, pages 402-404.
56This comes from the fact that the operator P corresponding to a given component of the system’s total momentum

is the generator of spatial translations in that direction. More explicitly: U(x) = exp(−iPx/~) is the unitary operator
that generates overall translations in space, so if a system described by a state-vector |ψ〉 has features of size ∼ ∆x,
in the sense that the vectors |ψ〉 and U(∆x)|ψ〉 are essentially orthogonal to each other, then its momentum cannot
be more sharply defined than ∆p ∼ ~/∆x.
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23 The significance of commuting observables

Section 9 considered two observables that don’t share any eigenvectors. Two such
observables cannot commute with each other.57,58 This section considers the oppo-
site extreme – two observables that do commute with each other.

Let A and B be two observables, each represented by a list of mutually orthog-
onal projection operators:

A = {P1, P2, ...} B = {Q1, Q2, ...}. (28)

Consider the condition∑
n

ρ(Qk|Pn)ρ(Pn) = ρ(Qk) for all states ρ. (29)

In words, this says that the occurrence of an A-measurement cannot affect the
distribution of outcomes of a B-measurement if we don’t condition on the outcome
of the A-measurement.

The condition (29) holds if and only if A and B commute with each other –
that is, if and only if all of the Pns commute with all of the Qns. To prove this,
first use the definition of ρ(· · · |Pn) and P ∗n = Pn to see that the condition (29) can
also be written ∑

n

ρ(PnQkPn) = ρ(Qk) for all states ρ. (30)

To prove that commutativity implies (30), use commutativity and P 2
n = Pn to get

ρ(PnQkPn) = ρ(QkPn), and then use
∑

n Pn = 1 (as required by (2)) to get (30).
To prove that (30) implies commutativity, use the fact that if (30) holds for all

57Recall that two operators X and Y are said to commute with each other if the order in which they are multiplied
does not matter: XY = Y X.

58The converse is false, because two operators may share an eigenvector even if they don’t commute with each
other.
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states ρ, then it implies the operator equation∑
n

PnQkPn = Qk.

Multiplying this equation on the left or right by Pj and using (3) gives either
PjQkPj = PjQk or PjQkPj = QkPj, respectively, and comparing these two results
gives PjQk = QkPj, so the the P s and Qs must commute with each other.

Altogether, this shows that the two observables (28) satisfy (29) if and only
if they commute with each other. In relativistic quantum field theory (QFT),
observables associated with regions of spacetime that cannot connected to each
other by any causal worldline59 are required to commute with each other, a princi-
ple called microcausality.60 That principle is meant to exclude faster-than-light
influences,61 but the result derived in this section is only part of that story. The
recognition that some so-called observables are not actually measurable62 is another
part of the story. Article 41818 explains why that matters.

59A worldline is called causal if it is not spacelike anywhere (article 48968).
60Article 21916
61Relativistic QFT is consistent with the experimental fact that Bell inequalities are violated (article 70833), which

does not require any such influences.
62Section 16
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24 Can Born’s rule be derived?

Born’s rule uses a state (a normalized positive linear functional) to assign probabil-
ities to projection operators representing the possible outcomes of a measurement.
In quantum theory, Born’s rule is a postulate: it is not derived from anything else.63

Gleason’s theorem and related theorems (article 77228) say that Born’s rule
is the only option64 if we require

ρ(P +Q) = ρ(P ) + ρ(Q) whenever PQ = 0 (31)

for all observables.65 Those theorems provide valuable insight, but they don’t quite
qualify as derivations of Born’s rule, because they don’t care which observables
will actually be measured. Assigning a nonzero probability to an outcome that we
know will not occur – because we know that the observable will not be measured
at all – is not necessary. If we only require (31) for observables that will actually
be measured, then Gleason’s theorem and its cousins do not apply, because they
rely on the stronger premise that (31) holds for all observables.

Any attempt to derive Born’s rule from the rest of quantum theory faces a
similar dilemma. The derivation should only require assigning probabilities to the
possible outcomes of observables that will actually be measured, so the derivation
must rely on a mathematically precise criterion for determining which observables
will actually be measured. Quantum theory in its current form does not provide
such a criterion, at least not a precise one: the criterion described in section 17 is
technically ambiguous, even if it is clear enough for practical purposes.

63Caves and Schack (2005) give a mathematically thorough explanation of why one early attempt to derive Born’s
rule is not valid, namely the one in Hartle (1967). Section II in Farhi et al (1989) gives a concise explanation of how
to evaluate Hartle’s quantity (10) for finite N .

64Actually, it doesn’t quite say this, because Born’s rule isn’t just a mathematical statement. It’s a postulate about
how the mathematical formalism relates to the real world. Any alleged derivation of Born’s rule must therefore start
with other postulate(s) about how the mathematical formalism relates to the real world. Merely showing that Born’s
rule is the only option consistent with a probability interpretation would not be enough to demonstrate that the
probability interpretation really is the correct interpretation.

65More precisely: for all projection operators in the von Neumann algebra that is generated by all of the model’s
observables (article 74088).
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25 Is quantum theory the final word?

The principles of quantum theory are the foundation for the most accurate and
comprehensive models we have ever had. Some quantum models even reproduce
general relativity as a good approximation.66 The most well-understood examples
produce spacetimes that are asymptotically like either flat spacetime or anti de
Sitter (AdS) spacetime, but the real universe appears to be asymptotically like
de Sitter (dS) spacetime instead. We don’t yet have any widely-accepted model
that reproduces general relativity as a good approximation with this asymptotic
condition.67 Some authors have speculated that this might indicate a limitation of
quantum theory, but we’ll see.

Historically, most discussions about the adequacy of quantum theory have re-
volved around the measurement problem. Some authors have suggested that the
measurement problem might not really be a problem,68 and some have suggested
that it might be a symptom that quantum theory is not the final word.69 In any
case, no compelling alternatives to quantum theory have been substantiated yet.

Quantum theory may or may not be the final word,70 but one thing is practically
certain: it will always be an important part of the physics curriculum. We know
now that Newton’s model of gravity was not the final word, but it still works just as
well as it worked originally. General relativity is even better, but Newton’s model is
easier and often sufficient, so Newton’s model is still taught first. Quantum theory
will always be an important tool, too, even if it isn’t the final word.

66Examples include the BFSS M(atrix) model, proposed in Banks et al (1997) and reviewed in Banks (1998)
and Bigatti and Susskind (1997), and the AdS/CFT correspondence, which is reviewed in Polchinski (2010), Mal-
dacena (2011), Sundrum (2012), Hubeny (2015), Kaplan (2016), and Van Raamsdonk (2017). These models allegedly
provide nonperturbative definitions of string theory in spacetimes that are asymptotically flat and asymptotically
AdS, respectively.

67Papers on this topic include Witten (2001), Strominger (2001), Banks (2015), and Susskind (2021).
68One example is Coleman (1994). This perspective can be traced back to Everett (1957), which introduced what

is often called many-worlds interpretation (MWI) of quantum theory. It doesn’t avoid the need for a criterion
like (15), but it does provide a nice perspective for thinking about such criteria, as explained in section 17.

69Weinberg (2013), page 95
70This is occasionally mentioned in quantum gravity research (example: Bousso (2002), text below equation (8.1)).
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