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Localized Operators
as States on Boundaries

Randy S

Abstract In quantum theory, observables – things that are presumed to be
measurable – are represented by linear operators on a Hilbert space, and states
can be represented by elements of the Hilbert space. Quantum field theory
(QFT) is a refinement of quantum theory in which each region of spacetime
has an associated set of observables. The path integral formulation of QFT
captures that association, and it also blurs the distinction between operators and
states. An operator associated with a spacetime region R can be implemented
by modifying the integrand of the path integral in a way that involves only the
integration variables (field variables) in R. Evaluating the integrals over just
those variables leaves a path integral with a state defined on the boundary of
the now-excised region R. This leads to a way of thinking about QFT as a
device that relates Hilbert spaces on different boundaries of spacetime to each
other, sometimes called functorial QFT. This article introduces that way of
thinking about QFT. The conventional concept of time evolution is a special
case in which the path integral relates the Hilbert space associated with the
initial time to the Hilbert space associated with the final time.
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1 Introduction and example

In quantum theory, observables are represented by operators on a Hilbert space.1

In quantum field theory (QFT), each region of spacetime has an associated set of
observables.2 This article reviews a refinement of that idea that occurs in the path
integral formulation of QFT.

In the path integral formulation, operators are represented as modifications of
the integrand of the path integral. The path integral involves many integration
variables, each localized at a particular point in spacetime. An operator localized
in a region R of spacetime may be represented as a modification of the integrand
involving only the integration variables localized in R. When the integrand includes
two or more such modifications corresponding to different operators localized in
non-intersecting regions, the result of that composition depends on more than just
the operators themselves. It might not even belong to the algebra generated by the
two operators.

Here’s an example that demonstrates that possibility.3 Let C be a spacelike
closed loop in d-dimensional spacetime, and let V be a (d − 1)-dimensional ball
that intersects C at a single point that is not on the boundary ∂V of V . Cut ∂V
into two hemispheres H1 and H2. Let G be a compact Lie group and consider a
model of a gauge field with gauged group G. Then we can choose a Wilson operator
W localized on C and topological ’t Hooft operators T (H1) and T (H2) localized on
H1 and H2 with these properties:

T (H1)T (H2) = I T (H1)W T (H2) = zW (1)

where I is the identity operator and z is a complex number that has magnitude 1
but is not equal to 1. These operators may all be represented as modifications of
the integrand of the path integral. Let A be the combination of the modifications

1Article 03431
2Article 21916
3This example uses a one-form symmetry called center symmetry. Article 09181 introduces the general concepts.

Article 82508 derives equations (1).
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representing T (H1) and T (H2), and let B be the modification representing W+W 2.
The first equation in (1) says that the modificationA by itself represents the identity
operator, but the second equation in (1) says that the operator represented by the
composition ofA andB is T (H1)(W+W 2)T (H2), which is proportional toW+zW 2.
This shows that the operator represented by the composition of A and B does not
belong to the algebra generated by the operators they individually represent.

We can think of A as representing the identity operator I, but we can also think
of A as representing an endomorphism of the operator algebra4 – a map from the
algebra of operators to itself instead of from the Hilbert space to itself. Even this
doesn’t fully capture what A is, though. To appreciate why, recall the time-slice
principle:5 the operator W +W 2 that we previously viewed as being localized on C
may also be viewed as localized in a neighborhood of any Cauchy surface far in the
future of C and H1 and H2. This implies that the same operator may be represented
as a (very complicated)6 modification B′ of the integrand that only involves field
variables in the far future. The operator represented by the composition of A and
B′ just W + W 2, which is different than the operator zW + z2W 2 represented by
the composition of A and B, even though the operators represented by B and B′

by themselves are equal to each other (both equal to W +W 2).7

The message is that in the path integral formulation, A and B are not just
operators (or just endomorphisms). They are something more. This article calls
them modifiers. The name is not standard, but the concept underlies many recent
developments in QFT. This article reviews the fact that a modifier can be fully
represented by excising the region of spacetime in which the operator is localized
and replacing it with a state on the boundary of that region, an idea that can be
formalized without relying on path integrals.8

4Benedetti et al (2025), section 3.2
5Article 21916
6Topological operators are special because they have simple descriptions in many different regions (article 82508).
7The localized morphism defined in Haag (1996), text after equation (IV.2.7) (also called a localized endomorphism

in Halvorson and Müger (2006), definition 8.1) doesn’t affect any operators localized in the causal complement of
a given region, but it’s still just an ordinary endomorphism: its effect on a given operator depends only on that
operator, not on any additional information.

8Section 16
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2 Outline

• Sections 4-5 review the structure of the path integral.

• Sections 6-7 introduce the idea of states on arbitrary boundaries.

• Sections 8-9 review the localized operator concept without using the path
integral formulation.

• Sections 10-11 introduce the idea that a modification of the integrand of the
path integral is more than just an operator.

• Sections 12-14 review how such a modification may be represented as a state
on the boundary of the region in which the operator is regarded as being
localized.

• Sections 15-16 mention formalizations of that idea that don’t rely on the path
integral formulation.

5
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3 Notation and conventions

In this article, operator means a linear operator on the Hilbert space.9 Many
sources (including other articles in this series) also use the word operator for what
this article calls a modifier, which is more than just a linear operator on the Hilbert
space.10 Notation:

• d is the number of dimensions of spacetime.

• X is a lower-dimensional submanifold of spacetime.

• M,R, S are d-dimensional regions in spacetime.

• ∂M is the boundary of M .

• If X ⊂M , then M \X is what remains after removing X from M .

• φ is a generic set of field variables in the context of a path integral.

• [φ]M is the set of field variables localized in M .

• Ψ is a function of some of the field variables φ used to represent a state in
the path integral formulation.

• Action[φ] is the action functional.

• i is a square root of −1.

• A(R) is the algebra of operators localized in R.

• M(R) is the set of modifiers localized in R (section 10).

• τ (A,B) is the composition of modifiers A and B (section 11), also called the
time-ordered product in situations where that name makes sense. AB is the
algebraic product (an operator) of A and B when they are regarded as mere
operators.

9Article 74088
10Section 2
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4 Time evolution and path integrals

In QFT, a path integral is an integral over field variables, each of which is
associated with a specific element (like a point or a link) of discrete spacetime.11

The path integral version describing the evolution of a state from time t to time t′

has the form12

Ψ′[φ]t′ ∝
∫
<t′

[dφ] eiAction[φ]Ψ[φ]t (2)

where

• Ψ and Ψ′ are the initial and final states,

• [φ]t denotes the set of field variables associated with time t,

• the action, denoted Action[φ], is a function of all the field variables from
times t to t′ inclusive,

• the integral is over of the field variables associated with times in the range
≥ t and < t′.

The details of the action depend on the model. In this article, the important
property of the action is that it is a sum of terms that each depend only on field
variables associated with a small neighborhood of a point in spacetime.13

11Article 46333 describes a relatively general way to discretize spacetime. This article uses some of the language
(like link) introduced there.

12Other articles describe this in more detail: article 63548 for a model whose only field is a scalar field, article
89053 for a model whose only field is a gauge field.

13The path integral is often defined with the help of Wick rotation (footnote 12). The ideas in this article don’t
directly depend on understanding Wick rotation.
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5 States as functions of field variables

Each state in equation (2) is a function of the field variables associated with a
single time. Elements of the Hilbert space are complex-valued functions Ψ[φ] of
the field variables at a single (unspecified) time,14 with the inner product between
two states Ψ1 and Ψ2 defined by∫

[dφ] Ψ∗1[φ]Ψ2[φ].

Linear operators on the Hilbert space are typically represented as differential op-
erators acting on the functions Ψ[φ]. Such representations may involve derivatives
with respect to the field variables and multiplication by functions of the field vari-
ables.15 The inner product is used to determine the corresponding representation
of the operator’s adjoint.

The rest of this article does not use the inner product.16

14This assumes that the spacetime manifold is homeomorphic to R ×Ms and that the “time” manifold R and
“space” manifold Ms are separately discretized so that the definition of the Hilbert space doesn’t need to specify the
time with which the two states are both associated. In principle, though, we could define a different Hilbert space
for each time. The idea that will be introduced in section 6 exploits this.

15Article 52890 illustrates this for a scalar field.
16Witten (2025) shares insights about how Wick rotation interacts with the definition of the inner product.
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6 States on arbitrary boundaries

Let R be a d-dimensional proper submanifold of d-dimensional spacetime,17 not
necessarily connected. Let S be another d-dimensional proper submanifold, also
not necessarily connected, and suppose the intersection R ∩ S is empty. Figure 1
illustrates the setup.

Let M be what remains of spacetime after deleting the interiors of R and S
(retaining their boundaries ∂R and ∂S), and consider the path integral

Ψ′[φ]∂R ∝
∫
M\∂R

[dφ] eiAction[φ]MΨ[φ]∂S (3)

where

• [φ]X denotes the set of field variables associated with a submanifold X,

• Ψ and Ψ′ are complex-valued functions of the indicated field variables,

• Action[φ]M is the part of the action that remains after discarding terms in-
volving field variables outside M ,

• the integral is over of the field variables associated with M \ ∂R (the field
variables in M but not in ∂R).

To make this precise, we would need to specify exactly how ∂R, ∂S, [φ]X , and
Action[φ]M are defined, given that spacetime is discretized.18 Section 7 will partially
address this.

Equation (2) is a special case of (3) in which S is the region before (and includ-
ing) the initial time t and R is the region after (and including) the final time t′, but
equation (3) is much more general. In this article, R will always be the future of
a given Cauchy hypersurface, so Ψ′[φ]∂R will always be the final state in the usual
sense, but S may have a more elaborate topology.

17Article 09181 defines proper submanifold. Roughly: a proper submanifold includes its own boundary.
18Example: if the action has a term (φ1−φ2)2 = φ21 +φ22−2φ1φ2, then does “discarding terms involving φ2” mean

that we should discard (φ1 − φ2)2, or should we retain φ21?
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Figure 1 – In these pictures, spacetime is two-dimensional. The top picture shows an example
of spacetime regions R and S that can be used in equation (3). R is the region to the left of the
left vertical line. S has three parts: one to the right of the right line, and the interiors of the
two circles. The bottom picture shows what remains after excising R and S. The integration
variables in equation (3) live in the shaded region in the bottom picture and on the boundary
∂S of S. The resulting state is a function of the variables that live on ∂R.
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7 Gluing path integrals together

Let M be a d-dimensional spacetime manifold whose boundary B may have one
or more connected components. Choose a (d− 1)-dimensional submanifold C that
cuts M into two parts, M+ and M−, both defined to include C, and suppose C does
not intersect B. Let B± be the parts of B that belong to M± (figure 2). Consider
the two path integrals

Ψ0[φ]C ∝
∫
M−\C

[dφ] eiAction[φ]M−Ψ−[φ]B− (4)

Ψ+[φ]B+
∝
∫
M+\B+

[dφ] eiAction[φ]M+Ψ0[φ]C . (5)

In words:

• The first one ingests a specified state on B− and produces a state on C.

• The second one ingests a specified state on C and produces a state on B+.

Using the state produced by the first path integral as the specified state in the
second path integral gives the combined path integral

Ψ+[φ]B+
∝
∫
M\B+

[dφ] ei
(

Action[φ]M++Action[φ]M−

)
Ψ−[φ]B−, (6)

which ingests a specified state on B− and produces a state on B+. For (6) to be
consistent with (3), the right side must be equal to∫

M\B+

[dφ] eiAction[φ]MΨ−[φ]B−,

which implies
Action[φ]M+

+ Action[φ]M− = Action[φ]M .

This is a condition on the definition of Action[φ]X that section 6 loosely described
as “discarding terms involving field variables outside X.”

11
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B+ B∂C

time

M+ M∂

Figure 2 – This picture shows an example of a guling arrangement described in section 7. Time
runs from right to left. Starting with the path integral from B− to B+, cutting the path integral
along C gives two path integrals, one from B− to C and one from C to B+.
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8 Localized operators

This section reviews the concept of associating observables with regions of space-
time in QFT. Section 10 will review how the path integral automatically accounts
for this association.

In quantum theory, observables are represented by operators on a Hilbert space.19

Quantum field theory is a refinement of quantum theory in which each d-dimensional
submanifold of d-dimensional spacetime has an associated set of observables.20,21,22

In this article, A(R) denotes the algebra generated by operators that represent
observables associated with a spacetime region R. This is called a local algebra.
Most of the operators in A(R) don’t represent observables, but every operator in
A(R) will be called localized in R.23

The same operator may be localized in multiple regions of spacetime: two local
algebras A(R1) and A(R2) may share some operators with each other even if R1

and R2 don’t intersect each other. The identity operator is a trivial example: it
belongs to the algebra A(R) for every R. Another supply of examples is given
by topological operators.24 A wealth of examples is supplied by the time-slice
principle,20 which says that if R1 is a neighborhood of one Cauchy hypersurface25

and R2 is a neighborhood of another Cauchy hypersurface, then A(R1) = A(R2).
The important message is that the region in which an operator is localized is
additional information that cannot be inferred from the operator itself.

19Article 03431
20Article 21916
21This way of expressing the definition uses the Heisenberg picture.
22One important example of a d-dimensional submanifold is a d-dimensional open ball, but the submanifold may

also have a more interesting topology, like a neighborhood of a loop.
23The net of algebras A(R) is not necessarily additive. Article 21916 (version dated 2025-07-25 or later) explains

what this means.
24Article 09181
25Section 3.1 in Witten (2019) defines Cauchy (hyper)surface.
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9 Time-ordered products

Let RA and RB be non-intersecting neighborhoods of two non-intersecting Cauchy
hypersurfaces, and let A and B be operators localized in RA and RB, respectively.
In this simple situation, the time-ordered product is defined to be26

τ (A,B) ≡

{
AB if RA is in the future of RB,

±BA if RB is in the future of RA.
(7)

More generally, if A is localized in RA and B is localized in RB, equation (7)
becomes

τ (A,B) ≡

{
AB if RA does not intersect the causal past of RB,

±BA if RB does not intersect the causal past of RA.
(8)

This assumes microcausality, which says AB = ±BA if neither RA nor RB

intersects the other’s causal past. If they both intersect each other’s causal past,
then τ (A,B) is undefined.

Unlike the ordinary algebraic product of two operators,27 the time-ordered prod-
uct relies on information about where in spacetime those operators are localized.
This extra information is essential, because the region of spacetime at which an
operator is localized cannot be inferred from the operator itself.28 We can think
about τ (A,B) as having only two inputs A,B if we think of A and B themselves as
carrying that extra information. Then A and B are more than just linear operators
on a Hilbert space. Sections 10-11 will review how the path integral formulation
captures this extension of the concept of an “operator.”

26The sign is negative if A and B both have odd fermion grade and is positive if either one has even fermion grade.
27In this article, an operator is a linear transformation of a Hilbert space (section 10). The ordinary algebraic

product of two operators A and B is defined by applying both linear transformations in a specified order.
28Section 8
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10 Operators as modifications of the integrand

In the path integral formulation, field variables are integration variables indexed
by elements of discrete spacetime (when spacetime is discretized to define the path
integral unambiguously). Given a subset X of spacetime, an operator localized on
X is typically described by modifying how the integrand of the path integral de-
pends on the field variables indexed by X.29 Such modifications of the integrand of
the path integral are often called (operator) insertions30 or defects,31 depend-
ing on the author and/or on the nature of the modification. To avoid any specific
connotations that might be conveyed by the other names, this article will call it a
modifier.32 The set of modifiers localized in R will be denoted M(R).

A modifier is more than just an operator on the Hilbert space of initial states.
In particular, the information that defines a modifier includes a region of spacetime
in which it is localized. In the example in section 9, the time-ordered product of
A and B would be undefined if A,B were viewed as nothing more than operators
on the Hilbert space of initial states, but it is well-defined if they are viewed as
modifiers. Section 2 showed that specifying an operator together with a localization
region still isn’t sufficient: a modifier is more than this.

A map is called forgetful if it simply discards some of the information in the
definition of one thing to reduce it to the definition of a simpler thing. Forgetful
maps occur throughout mathematics. The case of interest in this article is the
forgetful map M(R) → A(R) that converts modifiers to mere operators. To keep
the notation light, this article uses the same symbol for a modifier A ∈M(R) and
the operator A ∈ A(R) to which it reduces under the forgetful map.

29Article 63548 describes basic examples. The articles cited in article 22721 describe several more examples.
30Copetti et al (2025)
31Iqbal (2024)
32This name is not standard.
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11 The composition of modifiers

Consider two modifiers A ∈M(RA) and B ∈M(RB). If RA and RB do not inter-
sect each other, then applying both modifiers to the integrand of the path integral
defines33 another modifier τ (A,B) ∈M(RA∪RB) that we may call the composi-
tion of modifiers. This generalizes in the obvious way to the composition of any
number of modifiers A,B, ..., denoted τ (A,B, ...).

If the regions RA and RB do not both intersect each other’s causal past, then
the composition τ (A,B) reduces to the time-ordered product of A and B (section
9). In that case, the name time-ordered product is appropriate because τ (A,B) is
equal to either AB or ±BA, where juxtaposition denotes the ordinary algebraic
product of A and B when they are regarded as mere operators.

If the regions RA and RB do both intersect each other’s causal past, then the
name time-ordered product seems less appropriate:34 the “time order” is undefined,
and the result τ (A,B) is not necessarily an algebraic product of A and B. It might
not even belong to the algebra generated by A ∈ A(RA) and B ∈ A(RB).35 This
article uses the less presumptuous name composition of modifiers instead.36

33In a model with fermion fields, a sign ambiguity may exist because the field variables themselves may be anti-
commuting. This article ignores that complication.

34If A =
∑

j Aj and B =
∑

k Bk for operators Aj and Bk that are all localized in non-overlapping time intervals,
then τ (A,B) can be defined as

∑
j,k τ (Aj , Bk). Even in that case, though, the composition τ (A,B) is using extra

information about how A and B are constructed, not just the operators A and B and their localization regions.
35Section 2 described an example.
36This name is not standard.
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12 Modifiers as states on new boundaries

Consider the path integral of a lattice QFT with only scalar fields. Let R be a
region of spacetime with no sites on its boundary, as depicted in figure 3, and let
φ(R) be the set of field variables associated with the sites in R. Let ∂R be the set
sites that are just inside R and have immediate neighbors just outside R. Consider
a modifier localized in R \ ∂R that is represented by inserting a function of the
field variables φ(R \ ∂R) into the integrand of the path integral. Doing the path
integral over the field variables φ(R \ ∂R) eliminates those variables but leaves a
new function Ψ[φ(∂R)] in the integrand.37 As far as modifiers localized elsewhere
are concerned, this function Ψ[φ(∂R)] is an equivalent representation of the original
modifier.

Conversely, we can excise (delete) any region R \∂R of spacetime and impose a
state on the boundary ∂R of the excised region. This provides many new modifiers
– and therefore operators – that we might not have considered otherwise. As an
example, we could choose the function Ψ[φ(∂R)] to be nonzero only for specific
values of the field variables φ(∂R), which is the same as imposing those values
as boundary conditions on the fields in the path integral. This suggest a way to
formalize the concept of a modifier in a way that doesn’t rely on the path integral
formulation. Section 16 will cite some references.

37In a lattice QFT with only gauge fields, the same idea works if we define Φ(R) to be the set of link variables that
have at least one endpoint in R and define Φ(∂R) to be the set of link variables that have only one endpoint in R.
The resulting state is necessarily gauge invariant. To deduce this, consider only the part of the path integral (with
the part of the action) that involves variables in Φ(R). The integrand (including the action) is a gauge-invariant
function of all of the link variables, so integrating over any subset of the link variables must leave a gauge-invariant
function of the remaining ones.

17
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Figure 3 – These pictures illustrate the setup for describing a modifier localized in R as a state
on the boundary ∂R of R. The interior of R is excised in the sense that the path integral no
longer involves any field variables localized in R. The integrals over those field variables were
already evaluated to produce the state on ∂R. Segal (2021) uses a similar picture to convey
the same idea (timestamps 7:13 to 8:28) but with the goal of developing an axiom system that
doesn’t rely on path integrals.
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13 The excised region as keep-out zone

When a modifier is constructed as described in section 12, a region of spacetime is
effectively excised, preventing the construction of other modifiers whose localiza-
tion regions intersect the excised region. Such a keep-out zone would typically
exist anyway, because the composition is typically defined only for modifiers whose
localization regions don’t intersect each other. If they do intersect, then the pre-
scription in section 11 to “apply both modifications to the integrand” might be
undefined.

Many operators of interest in studies of QFT are nominally localized on lower-
dimensional submanifolds of d-dimensional spacetime – on points, curves, surfaces,
and so on. In the continuum limit, observables in d-dimensional spacetime strictly
localized on lower-dimensional manifolds like points or curves typically don’t ex-
ist.38 That’s not a problem for physics, because real experiments don’t have unlim-
ited resolution anyway. For many purposes, though, pretending that observables
can be strictly localized on such lower-dimensional manifolds can simplify the equa-
tions and the intuition. We can get away with this as long as we are careful to avoid
multiplying observables whose lower-dimensional localization regions intersect each
other, so each operator’s localization region is once again a keep-out zone for other
operators.39,40 If we’re imposing that constraint anyway, then we don’t lose any-
thing by constructing the operators (or modifiers) as described in section 12: in
the path integral, excise (delete) an arbitrarily small d-dimensional neighborhood
of the given lower-dimensional manifold from d-dimensional spacetime and impose
an appropriate state on the boundary of the excised region.

38Article 09181
39Example: we can treat the scalar field operator φ(x) as though it were strictly localized at the point x, as long

as we never set y = x in products like φ(x)φ(y).
40The region over which one operator is smeared (article 10690) should not intersect the keep-out zones of other

operators. This avoids the issue mentioned in article 10690 about interference between smearing and the composition
of modifiers (called the time-ordered product in that article).

19
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14 The importance of entanglement

Consider a Cauchy hypersurface X at a time intermediate between the initial and
final times. Let R be a neighborhood of the intermediate Cauchy hypersurface,
and suppose that R does not touch the initial or final times. The boundary ∂R
has two components: one slightly before X, and one slightly after X. Denote these
components by (∂R)− and (∂R)+, respectively (figure 4).

Consider the path integral obtained from (2) by applying an modifier somewhere
in R. The path integral covers the part of spacetime from the initial time to the
final time. Now evaluate the integrals over all the field variables in R, which induces
a state on ∂R.41 The new path integral only covers the parts of spacetime from
the initial time to (∂R)− and from (∂R)+ to the final time. These two parts of
spacetime are not connected to each other, but the state at the final time is still
affected by the state at the initial time, just like it was before we evaluated the
integrals in R. This works because the induced state on ∂R = (∂R)−∪ (∂R)+ does
not factorize: it cannot be written as the product of a state on (∂R)− and a state
on (∂R)+.42

This non-factorization property could be described as entanglement between
(∂R)− and (∂R)+. That word is used more often when the two entangled parts
of the system are separated from each other along a spacelike direction. In this
example they are separated from each other along a timelike direction instead, but
it’s the same idea mathematically. In a relativistic model where Wick rotation can
be used to remove the distinction between timelike and spacelike directions, this
example can be turned into a proof that all states with finite (non-infinite) energy
are entangled with respect to location in space.43

41Section 12
42For a specific example, think of the free scalar field φ described using the path integral formulation in article

63548. The action has terms of the form (φ(x)− φ(y))2 where x and y are adjacent points in the lattice. Evaluating
an integral of the form

∫
dφ(y) exp

(
c(φ(x)− φ(y))2 + c(φ(y)− φ(z))2

)
with c 6= 0 gives a function of φ(x) and φ(z)

that cannot factorized into the product of a function of φ(x) and a function of φ(z).
43Article 00980 illustrates this for a free scalar quantum field.
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Figure 4 – These pictures illustrate the setup described in section 14. R is a neighborhood of a
Cauchy hypersurface X. (X is not highlighted.) Its boundary has two components, (∂R)+ and
(∂R)−, that lie on opposite sides of X. Integrating over the field variables in R leaves a state
on (∂R)+ ∪ (∂R)−. This state cannot be written as a product of states on (∂R)+ and (∂R)−,
because if it could then the state at the final time would be independent of the state at the
initial time, which would violate the principle that time evolution should be unitary.
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15 The state-operator correspondence in CFT

Section 12 described a correspondence between operators localized in R and states
on ∂R. Each operator localized in R is represented by such a state (by construc-
tion), and each state on ∂R may be interpreted as such an operator (by definition).
The name state-operator correspondence is usually reserved for something more
specific – to a special property of conformal field theory (CFT).44 This section
explains how that special property relates to the correspondence in section 12.

In smooth spacetime, relativistic QFT has the Reeh-Schlieder property.45

To describe this property in the path integral formulation, let Xi be an initial
Cauchy hypersurface, let Xf be a final Cauchy hypersurface, and let R be an
arbitrarily small neighborhood of a point between Xi and Xf . Roughly, the Reeh-
Schlieder property says that all the states in the Hilbert space associated with Xf

may be obtained by choosing a single state on Xi and applying operators localized
in R. The state-operator correspondence in CFT comes from using conformal
symmetry to relate Xf to ∂R, so the two-way correspondence between operators
in R and states on ∂R becomes a two-way correspondence between operators in R
and states on Xf , like a two-way version of the Reeh-Schlieder property.46

The Reeh-Schlieder property and the (CFT) state-operator correspondence both
rely on smooth spacetime. The correspondence described in section 12 does not:
it works even if spacetime is discretized to make the path integral unambiguous.

44Most models don’t have conformal symmetry, and models in discretized spacetime never do except in the low-
resolution limit at a critical point (article 10142).

45Article 00980
46The fact that the state-operator correspondence in CFT is related to the Reeh-Schlieder property is mentioned

in https://ncatlab.org/nlab/show/Reeh-Schlieder+theorem.
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16 From path integrals to axioms

This article explained how the path integral formulation of QFT may be viewed
as a device that relates states on one set of components of the boundary of a
spacetime manifold to states on another component of the boundary. One idea for
a axiomatic characterization of QFT tries to capture that view in abstract terms
– without referring to the path integral construction – by describing QFT as a
functor from a category of spacetimes-with-boundaries (bordisms) to a category of
Hilbert spaces. Sometimes the idea is called functorial QFT.47 In that approach,
a localized observable can be described as explained in section 12 – by excising the
region of spacetime where it’s localized and imposing an appropriate state on the
boundary of the excised region.48 This is an abstract way of defining what section
10 called a modifier. Axiom systems of this kind is relatively well-developed for
conformal QFT (CFT) and topological QFT (TQFT).49 The idea is still relatively
exploratory for quantum field theory in general,50,51,52 but it is widely used in the
study of anomalies.53

47Dedushenko (2022), section 2.3; Schreiber (2008)
48Section 2.2 in Tachikawa (2017) describes this for conformal QFT, using the state-operator correspondence.

Schreiber (2008) uses heavy category-theoretic language to address it for general QFT. Section 3 in Kontsevich and
Segal (2021) (also Segal (2021), timestamps 7:10 to 8:30) describes the idea for operators nominally localized at
individual points.

49Tachikawa (2017), section 2.1; Schreiber (2008), section 1
50Dedushenko (2022), section 2.3
51An earlier rendition of the idea was given in Dijkgraaf and Witten (1990), section 6.1.
52Choosing such a system of axioms amounts to deciding precisely what quantum field theory in general should

mean. Section 3 in Kontsevich and Segal (2021) says “The guiding principle of this approach is to preserve as much
as possible of the path-integral intuition.” An earlier account of this proposed definition of QFT is given in Segal
(2011), timestamps 4:20 to 9:05.

53Monnier (2019), section 2; Freed (2014), section 2.1; Monnier (2015), section 2.1; Monnier (2014)
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