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The Free Scalar Quantum Field:
Vacuum State

Randy S

Abstract Article 52890 explained how to construct models
of scalar quantum fields in a mathematically straightforward
way by treating space as a lattice. The free scalar field, whose
equation of motion is linear, is a special case in which the
energy eigenstates can all be determined explicitly. This article
uses the free scalar field to highlight some basic points about
the vacuum state, the state with the lowest energy.
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1 Introduction

Article 52890 showed how to construct a model of a single scalar quantum field
φ(x, t) whose time dependence is governed by the equation of motion1

φ̈(x, t)−∇2φ(x, t) + V ′
(
φ(x, t)

)
= 0. (1)

This article focuses on the special case2

V (φ) =
m2

2
φ2 + constant (2)

with m2 > 0. In this case, the scalar field is called free because the corresponding
particles (article 30983) don’t interact with each other. This limits the model’s
usefulness, but it can still be instructive. This article uses the free scalar model to
illustrate a few things:

• In relativistic quantum field theory, the vacuum state is entangled with re-
spect to location. Section 10 uses the free scalar model to make this explicit.

• In contrast to the relativistic case, the vacuum state in strictly nonrelativistic
quantum field theory is not entangled with respect to location, but that’s only
because the nonrelativistic approximation implicitly uses a different definition
of location. Section 14 uses the free scalar model to make this clear.

• In relativistic quantum field theory, the method called perturbation theory
– expanding in powers of a small parameter in the hamiltonian – doesn’t work
for state-vectors.3 Section 15 uses the free scalar model to explain why.

• The concept of vacuum energy is meaningless... or not. See section 16.

1Each overhead dot denotes a derivative with respect to the time coordinate t, and ∇ is a lattice version of
the gradient with respect to the spatial coordinates x. The function V ′ is the derivative of V with respect to its
argument. This article uses natural units, with ~ = c = 1.

2Article 44563 showed how to construct this model directly in continuous space. This article uses the lattice version
instead, so the field operators may be localized at individual points without causing any mathematical trouble.

3Thankfully, it still works for other things.
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2 Notation for the spatial lattice

In this article, time is continuous, but space is treated as a finite lattice. The
number of dimensions of space is denoted D. Along each of the D axes, the lattice
wraps back on itself after K steps,

f(x +Ken) = f(x) for all n ∈ {1, 2, ..., D},

so that the number KD of lattice sites is finite. The length of the lattice along each
axis will be denoted L ≡ Kε. The lattice version of an integral is∫

dDx f(x) ≡ εD
∑
x

f(x), (3)

where the length scale ε is much finer than the resolution of any practical measure-
ments. The lattice version of the Dirac delta distribution for the difference between
two points in space is4

δ(x− y) ≡

{
1/εD if x = y,

0 otherwise.
(4)

The lattice version of the gradient is defined so that(
∇f(x)

)2 ≡
∑
n

(
f(x + en)− f(x)

ε

)2

, (5)

with one basis vector en of magnitude ε for each n ∈ {1, 2, ..., D}, and the lattice
version of the laplacian is defined by

∇2f(x) ≡
∑
n

f(x + en) + f(x− en)− 2f(x)

ε2
(6)

so that integration-by-parts works nicely (article 71852).
4For the difference between two momenta, the normalization is different (section 3).
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3 Lattice Fourier transforms

The Fourier transform of a function f(x) is defined by (article 71852)5,6

f(p) ≡
∫
dDx e−ip·xf(x). (7)

The allowed values of p are such that the quantity p·x is always an integer multiple
of 2π/K. The integral over all p is defined by∫

dDp

(2π)D
· · · ≡ 1

LD

∑
p

· · · . (8)

The identities ∫
dDp

(2π)D
eip·(x

′−x) = δ(x′ − x)∫
dDx ei(p

′−p)·x = (2π)Dδ(p′ − p) (9)

hold, with δ(x′ − x) defined by (4) and δ(p′ − p) defined by

(2π)Dδ(p′ − p) ≡
{
LD if p = p′

0 otherwise.
(10)

The Fourier transforms of ∇f(x) and ∇2f(x) are ∇(p)f(p) and −|∇(p)|2f(p)
with

∇k(p) ≡
exp

(
ip · ek

)
− 1

ε
|∇(p)|2 =

∑
k

(
2 sin(ek · p/2)

ε

)2

. (11)

5 I’m using using continuum-like notation as an abbreviation for lattice expressions, so the integral in (7) is defined
by (3). I’ll occasionally use the explicit lattice notation as a reminder.

6I’m using the same letter for the original function and its Fourier transform. They’re distinguished from each
other by the letters used for their arguments.
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4 The model

In the special case (2), the equation of motion (1) reduces to the Klein-Gordon
equation

φ̈(x, t)−∇2φ(x, t) +m2φ(x, t) = 0. (12)

This is the equation of motion for the free scalar model. It defines the field’s
time-dependence. The field’s algebraic properties are defined by the equal-time
commutation relations (article 52890)7[

φ(x, t), φ(y, t)
]

= 0
[
φ̇(x, t), φ̇(y, t)

]
= 0[

φ(x, t), φ̇(y, t)
]

= iδ(x− y). (13)

The field operators are self-adjoint:8(
φ(x, t)

)†
= φ(x, t).

Observables are expressed in terms of the field operators, as in article 52890. The
field operator φ(x, t) itself represents an observable localized at the point x at time
t. This defines what location means in this model. Section 14 derives an interesting
implication of this statement.

7[A,B] ≡ AB −BA.
8In this article, the adjoint of an operator A is denoted A†.
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5 The field operators in terms of ladder operators

Define
ω(p) ≡

√
m2 + |∇(p)|2 (14)

with ∇(p) defined by equation (11). This reduces to ω(p) ≈
√
m2 + p2 when the

components of p are all close to zero. To simplify the notation, the function ω(p)
will be abbreviated as ω whenever it appears in an expression involving only one
wavenumber p.

The equations in section 4 are equivalent to the statement that the field can be
written9,10

φ(x, t) =

∫
dDp

(2π)D
a(p)e−iωt+ip·x + a†(p)eiωt−ip·x√

2ω
(15)

with
a†(p) ≡

(
a(p)

)†
,

where the operators a(p) satisfy11

[a(p), a(p′)] = 0 [a(p), a†(p′)] = (2π)D δ(p′ − p). (16)

The operators a(p) and a†(p) are often called creation/annihilation opera-
tors.12 They are also sometimes called ladder operators.13

9The integral in (15) is defined by (8).
10The signs of the p · x terms in the exponent are chosen so that the sign of p agrees with the sign of a particle’s

velocity (article 30983). If we use the mostly-minus convention for the Minkowski metric, then the conditions
pa = (ω,p) and xa = (t,x) imply pa = (ω,−p) and

∑
a pax

a = ωt− p · x.
11To prove that these equations imply those in section 4, substitute (15) into those equations and then use equations

(14) and (16) to simplify the results. Section 6 outlines a proof of the converse.
12This name comes from their relationship to particles (article 30983), but beware the name is often applied to any

set of operators satisfying commutation relations like (16), whether or not they have anything to do with particles.
13This name comes from equation (28), which implies that applying a†(p) to a state increases its energy by ω(p),

and applying a(p) decreases it by the same amount, like climbing up and down the steps of a ladder. Beware the
name is sometimes applied to any set of operators satisfying commutation relations like (16), whether or not they
have anything to do with energy.
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6 Proving the converse: outline

To prove that the equations in section 4 imply those in section 5, start by taking
the Fourier transform of the equation of motion (12) to get

φ̈(p, t) + ω2φ(p, t) = 0, (17)

with ω(p) defined as before and

φ(p, t) ≡
∫
dDx e−ip·xφ(x, t). (18)

The fact that φ(x, t) is self-adjoint implies(
φ(p, t)

)†
= φ(−p, t). (19)

If φ(p, t) were an ordinary function (instead of an operator), then every solution
of equation (17) would be uniquely determined for all t by its initial data φ(p, 0)
and φ̇(p, 0). The same should14 be true when they are operators, so equations (17)
and (19) imply

φ(p, t) =
e−iωta(p) + eiωta†(−p)√

2ω
(20)

for some operator a(p). Equation (20) implies

a(p) =
ωφ(p, 0) + iφ̇(p, 0)√

2ω
, (21)

and the commutation relations (13) imply that these operators satisfy equations
(16). Equation (18) implies

φ(x, t) =

∫
dDp

(2π)D
eip·xφ(p, t), (22)

and substituting (20) into this equation gives equation (15).
14This step in the proof is omitted (hence the word outline in the title). We could apply the same reasoning to

equation (12) to infer equation (15) directly, but starting with equation (17) makes the omitted step smaller, because
the structure of equation (17) is simpler than that of equation (12).
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7 The hamiltonian

Let κ denote the constant term in equation (2). When applied to the special case
(2), article 52890 shows that the operator

H =

∫
dDx

(
φ̇2(x, t) +

(
∇φ(x, t)

)2
+m2φ2(x, t)

2
+ κ

)
(23)

is independent of t and that it generates the time dependence of the field operators:

φ(x, t) = U−1(t)φ(x, 0)U(t) U(t) ≡ e−iHt. (24)

In other words, the operator (23) is the hamiltonian for the free scalar model. The
hamiltonian is the observable corresponding to the system’s total energy. The state
with the lowest possible energy is called the vacuum state.

To derive an explicit expression for that state, start by substituting (22) into
(15) and using the identity (9) to get

H =

∫
dDp

(2π)D
φ̇†(p, t)φ̇(p, t) + ω2φ†(p, t)φ(p, t)

2
+ LDκ.

Now substitute (20) into this. All terms of the form a(p)a(−p) cancel, and so do
all terms of the form a†(−p)a†(p). In the remaining terms, the t-dependent factors
cancel each other, leaving

H =

∫
dDp

(2π)D
ω

2

(
a†(p)a(p) + a(−p)a†(−p)

)
+ LDκ

=

∫
dDp

(2π)D
ω

2

(
a†(p)a(p) + a(p)a†(p)

)
+ LDκ.

Use equation (16) to get the final expression

H =

∫
dDp

(2π)D
ω(p) a†(p)a(p) +

∑
p

ω(p)

2
+ LDκ. (25)
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More explicitly,

H =
1

LD

∑
p

ω(p) a†(p)a(p) +
∑
p

ω(p)

2
+ LDκ. (26)

The constant κ is arbitrary, so we might as well choose it to be15

κ = − 1

LD

∑
p

ω(p)

2
. (27)

Then

H =

∫
dDp

(2π)D
ω(p) a†(p)a(p). (28)

As a consistency check, we can use this expression for H and the commutation
relations (16) to confirm

i
[
H,φ(x, t)

]
= φ̇(x, t), (29)

which is another way of expressing the fact that H generates translations in time.16

15If we didn’t allow κ to depend on the parameters of the lattice, then the hamiltonian’s lower bound would become
infinite in the infinite-volume limit, because then the sum

∑
p ω(p) would have an infinite number of terms. That

would violate the spectrum condition (section 8).
16Equation (29) is the derivative of equation (24) with respect to t.
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8 The vacuum state

Each term in the sum (28)17 is a positive operator, so the spectrum of H has a lower
bound, as required by the spectrum condition (article 21916). The minimum
possible value of 〈v|H|v〉/〈v|v〉 among all nonzero state-vectors |v〉 occurs when
|v〉 is the state |0〉 that satisfies 〈0|a†(p)a(p)|0〉 = 0 for all p. This condition is
equivalent to18

a(p)|0〉 = 0 for all p, (30)

because the norm of a state-vector cannot be zero unless the state-vector itself
is zero. Equation (30) is wonderful, because it characterizes the vacuum state
algebraically. The vacuum state is defined to be the state with the lowest possible
energy, but in most models, we don’t know how to characterize the lowest-energy
state algebraically. The fact that we can do this in the free scalar model is one of
the main reasons this model is so much easier to analyze than most others.

Article 52890 used an explicit representation of the Hilbert space to define the
field operators. Thanks to equation (30), we can use that same representation here
to derive an explicit expression for the vacuum state.

Here’s a quick review of the representation: a state-vector is represented by a
complex-valued function Ψ[s] of an enormous number of real variables s(x), one
for each point x in the lattice. This is a functional representation.19 The inner
product 〈1|2〉 of two state-vectors Ψ|1〉 and Ψ|2〉 is the integral of Ψ∗|1〉[s]Ψ|2〉[s] over all

of those variables. At time t = 0, the field operator φ(x, 0) and its time-derivative
φ̇(x, 0) are represented by

φ(x, 0)Ψ[s] = s(x)Ψ[s] φ̇(x, 0)Ψ[s] =
−i
εD

∂

∂s(x)
Ψ[s]. (31)

17Remember that the “integral” in (28) is defined by (8).
18Article 44563 uses a different route to reach this same result.
19The word functional typically refers to a function whose argument is another function. In this case, the arguments

of the function Ψ[s] are real numbers s(x) that can be collectively regarded as a function s(x) from the set of points
in space to the set of real numbers.

11
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This is consistent with the commutation relations (13). In this representation,
equations (18) and (21) say that the operators a(p) act as20

a(p)Ψ[s] =
1√

2ω(p)

∑
x

e−ip·x
(
εDω(p) s(x) +

∂

∂s(x)

)
Ψ[s]. (32)

Equation (30) is
a(p)Ψ|0〉[s] = 0 for all p.

This has a unique solution (up to proportionality), namely

Ψ|0〉[s] ∝ exp

−ε2D∑
x,x′

f(x′ − x)s(x)s(x′)

 (33)

with

f(x′ − x) =
1

2LD

∑
p

eip·(x−x
′) ω(p). (34)

The function Ψ|0〉 defined by (33) is an explicit expression for the vacuum state |0〉.
Using the notation (3) and (8), the last two equations are21

Ψ|0〉[s] ∝ exp

(
−
∫
dDx dDx′ f(x′ − x)s(x)s(x′)

)
f(x′ − x) =

1

2

∫
dDp

(2π)D
eip·(x−x

′) ω(p).

20To get the corresponding equation for the adjoint a†(p), take the complex conjugate and change the sign of the
derivative term. The sign-change for the derivative term comes from integrating-by-parts on the right-hand side of
the general definition

∫
[ds]Ψ∗1[s]A†Ψ2[s] ≡

∫
[ds](AΨ1)∗[s]Ψ2[s].

21Article 22050 explains how to evaluate the sum (34) in the infinite-volume and continuum limits.
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9 Low energy and coarse resolution

Quantum field theory is not usually meant to be a framework for a Theory of
Everything. When space is treated as a lattice for the purpose of defining a model,
the lattice is understood to be artificial. Such a model is, at best, only intended
to agree with experiments at resolutions much coarser than the lattice step-size, so
that artifacts due to the discreteness of the lattice are negligible.

To express this mathematically in the free scalar model, let U(δx) be a unitary
operator that implements a translation with displacement δx. The components of
δx are integer multiples of ε, the lattice step-size. The defining property of U(δx)
is

U−1(δx)φ(x, t)U(δx) = φ(x + δx, t), (35)

because the way the field operators depend on x is what defines the meaning of
location in this model. This condition doesn’t determine U(δx) uniquely, because if
U(δx) satisfies this condition, then so does U(δx)eiθ(δx) for any real-valued function
θ. We can make it unique by requiring that the vacuum state be invariant under
translations:

U(δx)|0〉 = |0〉. (36)

For predictions involving resolutions much coarser than the lattice spacing, we only
need to consider states |ψ〉 that are not affected much by small translations, which
means22

U(δx)|ψ〉 ≈ |ψ〉 if δx is small. (37)

According to equation (15), the condition (35) is equivalent to the condition

U−1(δx)a(p)U(δx) = a(p)eip·δx. (38)

States of the form
a†(p1)a

†(p2) · · · |0〉 (39)

22If we don’t want to rely on the auxiliary condition (36), then we could express the coarse-resolution condition
as |〈ψ|U(δx)|ψ〉|2 ≈ |〈ψ|ψ〉|2.

13
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span the Hilbert space, and equations (36) and (38) says that the effect of U(δx)
on such a state is

U(δx)a†(p1)a
†(p2) · · · |0〉 = ei(p1+p2+··· )·δxa†(p1)a

†(p2) · · · |0〉,

so the coarse-resolution condition (37) amounts to the condition that the state |ψ〉
should be expressible as a superposition of states (39) with each pn close to zero –
with close defined relative to 1/ε, the inverse of the lattice step-size. In particular,
the quantity ω(p) defined by equation (14) reduces to

ω(p) ≈
√
m2 + p2

at resolutions that are coarse compared to the lattice step-size.
The coarse-resolution condition can be enforced by imposing the low-energy

restriction. Equations (16), (28), and (30) imply that the energy of any state of
the form (39) is ∑

n

ω(pn).

If this is small compared to 1/ε, then the individual pns are automatically also
small compared to 1/ε.

This low-energy condition can only be satisfied if the parameter m is also small
compared to 1/ε. That constraint on m is in effect for the rest of this article.

14
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10 Entanglement and the cluster property

A state Ψ[s] is said to be separable with respect to locations in space if it’s equal
to a product of functions, each depending on only one of the variables s(x):23

Ψ[s] =
∏
x

fx
(
s(x)

)
⇔ Ψ is separable w.r.t. location.

Qualitatively, a function that is not separable is called entangled. Entanglement
(non-separability) can be quantified in many different ways. Use the abbreviation

ρ|v〉(X) ≡ 〈v|X|v〉
〈v|v〉

for the expectation value of an operator X in the state |v〉. The correlation function

G|v〉(x,y) ≡ ρ|v〉
(
φ(x, 0)φ(y, 0)

)
− ρ|v〉

(
φ(x, 0)

)
ρ|v〉
(
φ(y, 0)

)
is zero whenever the function Ψ|v〉 representing |v〉 is separable with respect to
locations in space,24 so this correlation function is one way to quantify a state’s
entanglement with respect to location at time t = 0. A larger magnitude of this
correlation function means more entanglement.

Let’s evaluate this correlation function in the vacuum state |0〉. To do this,
start by observing that the expectation value of φ(x, 0) in the vacuum state |0〉 is
zero:25

ρ|0〉
(
φ(x, 0)

)
= 0.

23More generally, in a model with multiple variables per site, a state is called separable with respect to location if
it can be written as a product of factors, each of which depends only on the variables associated with one site.

24To prove this, use equation (31) for φ(x, 0) and the definition of the inner product described in the text above
that equation.

25To deduce this, use the fact that the left-hand side must equal its own negative because vacuum state (33) is
invariant under φ(x, 0)→ −φ(x, 0).
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As a result, the correlation function in the vacuum state reduces to26

G|0〉(x,y) ∝
〈
0
∣∣φ(x, 0)φ(y, 0)

∣∣0〉
∝
∫

[ds] exp

−2ε2D
∑
z,z′

f(z′ − z)s(z)s(z′)

 s(x)s(y),

where the integral is over all of the real variables s and the function f is given by
(34). To evaluate the integral, think of s(x) as the components of a column matrix
with index x, so that the integral may be written

G|0〉(x,y) ∝
∫

[ds] e−s
TMs/2s(x)s(y) (40)

where M is the square matrix with components

M(x,y) = 4ε2Df(x− y). (41)

To evaluate the integral (40), start with

F [r] ≡
∫

[ds] e−s
TMs/2+sT r

= er
TM−1r/2

∫
[ds] e−(s−M−1r)TM(s−M−1r) ∝ er

TM−1r/2,

and then use equation (40) and the definition of F [r] to get∫
[ds] e−s

TMs/2s(x)s(y) =
∂

∂r(x)

∂

∂r(y)
F [r]

∣∣∣∣
r=0

∝M−1(x,y).

According to equations (34) and (41), this gives

G|0〉(x,y) ∝ 1

LD

∑
p

eip·(x−y)

ω(p)
(42)

26The second step uses the fact that the function f defined in (34) is equal to its complex conjugate.

16
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On a finite lattice, the number of terms in the sum is finite, so (42) is a perfectly
well-defined function of x−y. At resolutions much coarser than the lattice spacing
and for distances |x−y| much less than the overall size of the lattice, the sum (42)
essentially the same as the integral∫

dDp

(2π)D
eip·(x−y)√
p2 +m2

.

This is demonstrated in article 22050, which also derives the result∫
dDp

(2π)D
eip·(x−y)√
p2 +m2

∼ e−m|x−y| (43)

for large |x − y|, ignoring an overall nonzero |x − y|-dependent factor that is
practically constant compared to the rapidly decreasing exponential factor. The
fact that this is nonzero for |x− y| 6= 0 implies that the vacuum state is entangled
with respect to locations in space.

The result (43) also shows that the entanglement becomes negligible over dis-
tances much larger than 1/m. In particular, this shows that the state |0〉 has
the cluster property – a general principle of quantum field theory which says
(roughly) that the entanglement of the vacuum state should decrease with increas-
ing distance.27 The length scale 1/m is called the correlation length.

27On a finite lattice, this principle applies as long as the distance remains much less than the overall size of the
lattice. Remember that we are free to take the overall size of the lattice to be much greater than the size of the
known universe.
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11 The Reeh-Schlieder theorem

Section 10 showed that in the free scalar model, the vacuum state is entangled with
respect to location in space. Section 13 will show that all physically sensible states
are entangled with respect to location in space. This isn’t just a special feature of
the free scalar model. In relativistic QFT, every model has this feature.28 This is
a corollary of the Reeh-Schlieder theorem. In its most basic form, the Reeh-
Schlieder theorem says that for a QFT defined in continuous spacetime, the whole
Hilbert space can be generated by acting on the vacuum state with observables in
an arbitrarily small neighborhood of a single point in spacetime.29,30 The proof can
be generalized to all physically sensible states.31,32

One consequence of the Reeh-Schlieder theorem is that in relativistic QFT, the
vacuum state can’t be annihilated by any observable that is localized within in a
finite region of spacetime.33 Section 12 shows an example. Witten (2018) explains
how this relates to entanglement,34 and Papadodimas and Raju (2014) and Verch
(2005) give additional insight. This also affects the concept of localized particles
in relativistic QFT, as explained in article 30983.

28Section 1 in Witten (2018) says it like this: “the entanglement [between all field variables with respect to location
in space] is not just a property of the states but of the algebras of observables.”

29More carefully: no state in the Hilbert space is orthogonal to all of these.
30Section 4.2.1 in Raju (2020) compares this to an even more interesting result from quantum gravity.
31More precisely: it can be generalized to all states that are analytic for the energy operator. Borchers (1965)

explains what this means.
32Witten (2018) reviews the proof of the basic Reeh-Schlieder theorem in section 2.2 and mentions the generalization

in section 2.3: “every state can actually be approximated by states that could be used instead of the vacuum in the
Reeh-Schlieder theorem.” The proof of the basic version is also reviewed in Araki (1999), theorem 4.14, and the
proof of the general version is reviewed in Horuzhy (1990), theorem 1.3.1.

33To derive this, let Ω(R) be the algebra generated by observables in a region R. Suppose that a is an operator
for which a|0〉 = 0. Then 〈ψ|Aa|0〉 = 0 for all A ∈ Ω(R) and all states |ψ〉. If a were localized in a region that is
spacelike separated from R, then aA = Aa for all A ∈ Ω(R), which would imply 〈ψ|aA|0〉 = 0 for all A ∈ Ω(R) and
all states |ψ〉. But that contradicts the Reeh-Schlieder theorem, which says that no state is orthogonal to A|0〉 for
all A ∈ Ω(R). This shows that a can’t be strictly localized in any region that is spacelike separated from R, and
since R can be arbitrarily small and arbitrarily far away, a can’t be strictly localized in any finite region at all.

34Section 2.5 in Witten (2018) clarifies that in continuous spacetime, the entanglement highlighted in this article
can’t be properly described with respect to a factorization of the Hilbert space, but that subtlety is absent in lattice
models, which is the context for the description that was given here in section 10.
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12 The Reeh-Schlieder theorem: example

Section 11 mentioned that in relativistic QFT, the lowest-energy state cannot be
annihilated by any observable that is strictly localized within in a finite region of
space. This section describes an example to reinforce that concept.

By definition, the field operator φ(x, t) is localized at x at time t. Equation
(11) says that the field operator can be written like this:

φ(x, t) = φ+(x, t) + φ−(x, t) (44)

with

φ+(x, t) ≡
∫

dDp

(2π)D
a†(p)eiω(p)t−ip·x√

2ω(p)
=
(
φ−(x, t)

)†
(45)

φ−(x, t) ≡
∫

dDp

(2π)D
a(p)e−iω(p)t+ip·x√

2ω(p)
. (46)

Equations (16) and (28) imply that these operators decrease and increase (re-
spectively) the energy of any state to which they are applied. In particular, the
energy-decreasing part φ− annihilates the vacuum state: φ−(x, t)|0〉 = 0.

The field operator φ(x, t) is local by definition, but it doesn’t annihilate the
lowest-energy state |0〉. The energy-decreasing part φ−(x, t) does annihilate the
lowest-energy state, but the next paragraph shows that it is not local. This is con-
sistent with the Reeh-Schlieder theorem, which implies that a vacuum-annihilating
operator like φ−(x, t) cannot be localized in any finite region of spacetime, even
though the field operator φ(x, t) itself is localized at x at time t.

To confirm that φ−(x, t) is not localized in any finite region of space at time t,
start by using equations (44)-(46) to confirm the identities∫

dDy f(x− y)φ̇+(y, t) = iφ+(x, t)∫
dDy f(x− y)φ̇−(y, t) = −iφ−(x, t)
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with

f(x− y) ≡
∫

dDp

(2π)D
eip·(x−y)

2ω(p)
.

Add these two identities together, use φ̇(x, t) = φ̇+(x, t) + φ̇−(x, t), and re-arrange
to get this expression for the energy-decreasing part of the field operator:

φ−(x, t) =
1

2
φ(x, t) +

i

2

∫
dDy f(x− y)φ̇(y, t). (47)

On the right-hand side, the first term is local by definition. The last term involves
an integral (really a lattice sum) of the local operator φ̇(y, t) over all points in
space, so the last term is not localized in any finite region.

This one example doesn’t prove that every vacuum-annihilating operator must
be nonlocal, but it at least draws attention to the root cause: the function f(x−y)
is nonzero over arbitrarily large distances because of the factor of ω(p) in the inte-
grand, and the factor of ω(p) is a consequence designing the model to ensure that
Lorentz symmetry emerges at sufficiently low resolution. The usual proofs of the
Reeh-Schlieder theorem assume continuous spacetime, but any lattice model that
looks like a Lorentz-symmetric quantum field theory at sufficiently low resolution
will still have this kind of nonlocal relationship between the field operators (which
are local by definition) and their energy-increasing/decreasing parts.
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13 Unentangled states have huge energy

Section 10 showed that the vacuum state is entangled with respect to location, and
section 11 mentioned that in relativistic quantum field theory, all physically sensi-
ble states are entangled with respect to location. To corroborate that statement,
this section shows that in the free scalar model, any state that is separable (not
entangled) with respect to location has huge energy compared to the vacuum state.
In the continuum limit ε → 0 with fixed volume LD, the energy of any separable
state becomes infinite.

The hamiltonian is independent of t (article 52890), so we might as well set
t = 0 and use the abbreviations

φ(x) ≡ φ(x, 0) φ̇(x) ≡ φ̇(x, 0).

Start by writing the gradient term in the hamiltonian (23) like this:

H∇ ≡ εD
∑
x

(
∇φ(x)

)2

2
= εD

∑
x

∑
n

1

2

(
φ(x + en)− φ(x)

ε

)2

= εD
∑
(x,y)

φ2(x) + φ2(y)− 2φ(x)φ(y)

2ε2

where the last sum is over nearest-neighbor pairs (x,y).35 Use this to write the
hamiltonian (23) as

H = εD
∑
x

hx + εD
∑
(x,y)

φ2(x) + φ2(y)− 2φ(x)φ(y)

2ε2
(48)

and

hx ≡
φ̇2(x) +m2φ2(x)

2
+ κ.

35The cross-terms φ(x)φ(y) are sometimes called hopping terms, because they allow influences to hop from one
site to a neighboring site.
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Using the same representation as in section 8, consider a state Ψ[s] that is not
entangled with respect to location, which means

Ψ[s] =
∏
x

Ψx

(
s(x)

)
for some collection of single-variable functions Ψx(· · · ), one for each point x. Let
r denote an individual real variable, and use the abbreviations

〈A〉 ≡
∫

[ds] Ψ∗[s]AΨ[s]∫
[ds] Ψ∗[s]Ψ[s]

〈Ax〉x ≡
∫∞
−∞ dr Ψ∗x(r)AxΨx(r)∫∞
−∞ dr Ψ∗x(r)Ψx(r)

for the expectation values of any operator A and any single-site operator Ax. For
any separable state, the expectation value of the hamiltonian (48) is

〈H〉 = εD
∑
x

〈hx〉x + εD
∑
(x,y)

〈φ2(x)〉x + 〈φ2(y)〉y − 2〈φ(x)〉x〈φ(y)〉y
2ε2

. (49)

We want to find the minimum possible value of this quantity among all states that
are separable with respect to location, so we can compare it to the expectation
value of H in the vacuum state. To find the minumum, use the identity

〈A2〉 = 〈(A− 〈A〉)2〉+ 〈A〉2

and the abbreviations

v(A) ≡ 〈(A− 〈A〉)2〉 vx(A) ≡ 〈(A− 〈A〉x)2〉x

to write (49) as

〈H〉 = εD
∑
x

(〈
φ̇2(x)

〉
x

+m2vx
(
φ(x)

)
+m2

〈
φ(x)

〉2

x

2
+ κ

)

+ εD
∑
(x,y)

vx
(
φ(x)

)
+ vy

(
φ(y)

)
+
(〈
φ(x)

〉
x
−
〈
φ(y)

〉
y

)2

2ε2
. (50)
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The value of 〈φ(x)〉x can be adjusted freely by shifting the function Ψx(r) →
Ψx(r + r0), and the vx terms are invariant under this shift, so equation (50) shows
that the separable state that minimizes 〈H〉 must be such that 〈φ(x)〉x = 0 for
every x. For such a state, the quantity (50) reduces to

〈H〉 = εD
∑
x

(〈
φ̇2(x)

〉
x

+m2vx
(
φ(x)

)
2

+ κ

)

+ εD
∑
(x,y)

vx
(
φ(x)

)
+ vy

(
φ(y)

)
2ε2

= εD
∑
x

〈ĥx〉x (51)

with

ĥx ≡
φ̇2(x) + m̂2φ2(x)

2
+ κ m̂ ≡

√
m2 +

2D

ε2
.

The constant κ should be chosen so that the vacuum state – which is entangled with
respect to location – has finite energy. The conclusion won’t depend on specific
value of this lowest energy, as long as it’s finite, so we might as well choose κ as
before (equation (27)). Then, using the same method as in section 7 but without
the gradient term and with m̂ in place of m, the minimum possible value of (51)
turns out to be ∑

p

m̂− ω(p)

2
.

As promised, this diverges in the continuum limit ε→ 0 with fixed volume LD. This
completes the proof that in this limit, every state which is separable with respect
to location has infinite energy compared to the vacuum state. Physically sensible
states should have finite energy compared to the vacuum state, so all physically
sensible states are entangled with respect to location.

23



cphysics.org article 00980 2023-11-12

14 The non-relativistic approximation

Article 30983 shows that ω(p) is the energy of a single particle with momentum
p. In particular, the parameter m in the hamiltonian is the mass (rest energy) of
a single particle. The nonrelativistic approximation can be used when a particle’s
momentum is small compared to its mass: p2 � m2. Turning this around, the
nonrelativistic approximation assumes that m is much larger than other scales of
interest. Section 10 showed the entanglement of the vacuum state with respect to
location is negligible over distances much larger than the correlation length 1/m,
so this entanglement should be negligible in the nonrelativistic approximation.

That intuition is basically correct, but it misses an interesting detail: when we
replace a model with its nonrelativistic approximation (that is, with a model that
has the nonrelativistic approximation built into it), we change the relationship
between observables and regions of space – we slightly change the meaning of
location!

To see this, use the expansion

ω(p) = m+
p2

2m
+O(p4) (52)

in equation (28) to get

H =

∫
dDp

(2π)D

(
m+

p2

2m

)
a†(p)a(p) +O(p4) (53)

Standard treatments of the nonrelativistic approximation point out that equation
(53) may also be written

H =

∫
dDx a†(x)

(
m− ∇

2

2m

)
a(x) +O(p4) (54)

with

a(x) ≡
∫

dDp

(2π)D
eip·xa(p). (55)
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Equation (16) implies that these new operators satisfy[
a(x), a(x′)

]
= 0

[
a(x), a†(x′)

]
= δD(x′ − x) (56)

exactly. As in section 8, we can use a representation in which a state is a function
Ψ[σ] of lots of real variables σ(x), one per point in space, and in which the effect
of the operators a(x) and a†(x) are

a(x)Ψ[σ] =
1√
2

(
σ(x) +

∂

∂σ(x)

)
(57)

a†(x)Ψ[σ] =
1√
2

(
σ(x)− ∂

∂σ(x)

)
.

Equations (30) and (55) imply a(x)|0〉 = 0, so the vacuum state in this represen-
tation is

Ψ|0〉[σ] ∝ exp

(
−
∫
dDx

σ2(x)

2

)
=
∏
x

e−ε
Dσ2(x)/2. (58)

This shows that the vacuum state is separable (not entangled) with respect to the
variables σ(x). Most importantly, this result is exact – we derived it without using
the nonrelativistic approximation at all.36

How is this possible? Equation (33) is also exact, and it says that the vacuum
state is entangled with respect to location. The resolution of this paradox is that
even though the derivation of (58) doesn’t use the nonrelativistic approximation,
the interpretation of the operator a(x) and the variable σ(x) as being localized
at the point x does use the nonrelativistic approximation. Remember: in the
relativistic model, an observable (or other operator) is localized in a given region
of spacetime if and only if it can be expressed in terms of the field operators φ(x, t)
with x, t inside that region of spacetime. Thanks to the factors of ω(p) in in
equation (21), the definition (55) implies that a(x) cannot be written in terms of
only φ(x, 0) and φ̇(x, 0) at the same point x. The definition of a(x) involves field

36Equations (52)-(54) weren’t used, except to motivate the definition (55).
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operators from all points in space at time t = 0, so a(x) is not strictly localized in
any finite region at all, much less at the single point x.

On the other hand, the dependence of a(x) on the field operators is mostly
concentrated near the point x, falling off exponentially with increasing distance
and becoming negligible at distances much greater than 1/m. For this reason, the
interpretation of a(x) and σ(x) as being localized at x is a good approximation –
as good as the any other aspect of the nonrelativistic approximation.

One important message is that approximations can slip into the picture through
interpretations, not just through equations. Another important message is that
entanglement always refers to a specific organizing feature of the model, such as
location. The nonrelavistic approximation doesn’t eliminate the entanglement of
the vacuum state with respect to the original spatial structure, but it implicitly
defines a new (inequivalent) spatial structure with respect to which the vacuum
state’s entanglement is zero. Just saying that a state is entangled, without any
context, makes no sense. Any given state is both entangled and not entangled,
depending on which organizing feature is referenced.37

37The same vacuum state can be written in the representation (33), where it’s entangled, or the representation (58),
where it’s separable, or the representation (60), where it’s separable again. To relate the last two representations to
each other, use the fact that the σ(x) in equation (57) is the Fourier transform of the combination

√
ω(p) s(p) in

equation (59). The equivalence of expressions (58) and (60) is then implied by Parseval’s theorem.
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15 The effect of perturbing the mass parameter

Suppose that H and H ′ are the hamiltonian (28) for two different values of the mass
parameter m. This section derives two related results about the limit L→∞:

• The vacuum states for H and H ′ become orthogonal to each other.

• The expectation value of H in the vacuum state for H ′ becomes infinite.

These results are related to the fact that in the infinite-volume limit L→∞, two
models of free scalar fields with different masses cannot be unitarily equivalent to
each other,38 which in turn is a free-field analog of Haag’s theorem.39

The hamiltonian (28) and the commutation relation (16) may be written more
explicitly as

H =
1

LD

∑
p

ω(p) a†(p)a(p)

[a(p′), a†(p)] =

{
LD if p′ = p

0 otherwise.

We can enforce the commutation relation using the functional representation

a(p) =
1√

2ω(p)

(
ω(p)s(p) + LD

∂

∂s(p)

)
(59)

a†(p) =
1√

2ω(p)

(
ω(p)s(p)− LD ∂

∂s(p)

)
where s(p) is an independent real variable for each p. Let Ψm denote the vacuum
state, using a subscript m to indicate the value of the mass parameter. The vacuum

38Klaczynski (2016), theorem 17.1, and Reed and Simon (1975), page 233, theorem X.46.
39Haag’s theorem was proved in the context of an idealized axiomatic framework that might not cover many models

of interest, but its conclusion remains essentially unchanged in less idealized frameworks like lattice quantum field
theory.
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state is defined by the condition a(p)Ψm = 0, which is satisfied by the functional

Ψm[s] ∝ exp

(
− 1

LD

∑
p

ω(p)
s2(p)

2

)
. (60)

This depends on the mass parameter m via ω(p). The inner product of two vacuum
states corresponding to different values m and m′ of the mass parameter is

〈Ψm|Ψm′〉 ∝
∫

[ds] Ψ∗m[s]Ψm′[s]

∝
∏
p

∫
ds exp

(
− 1

LD
(
ω(p) + ω′(p)

) s2

2

)
∝
∏
p

1√
ω(p) + ω′(p)

where ω and ω′ involve m and m′, respectively. Therefore,∣∣ 〈Ψm|Ψm′〉
∣∣2

〈Ψm|Ψm〉 〈Ψm′|Ψm′〉
=
∏
p

2

η(p) + 1/η(p)

with

η(p) ≡

√
ω′(p)

ω(p)
.

If m′ 6= m, then η 6= 1, so each factor in the product is less than 1. (Each factor
is equal to 1 when m′ = m.) In the infinite-volume limit L→∞ with fixed lattice
spacing, the number of factors in the product grows without bound, so the product
goes to zero in the limit if m′ 6= m. This is the first result.

To derive the second result, use the preceding expressions to evaluate∣∣ 〈Ψm|Hm′|Ψm〉
∣∣2

〈Ψm|Ψm〉2
, (61)
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where Hm′ is the hamiltonian (28) with the mass parameter m replaced by m′.
When m′ = m, the quantity (61) is zero. When m′ 6= m, we can still use the m′

version of equation (59) together with the m version of equation (60) to get

am′(p)Ψm[s] =
ω′(p)− ω(p)√

2ω′(p)
s(p)Ψm[s],

which implies∣∣ 〈Ψm|Hm′|Ψm〉
∣∣2

〈Ψm|Ψm〉2
=

1

2LD

∑
p

(
ω′(p)− ω(p)

)2 ×
∫

[ds] Ψ∗m[s]s2(p)Ψm[s]

〈Ψm|Ψm〉2

=
πLD

2LD

∑
p

(
ω′(p)− ω(p)

)2

ω(p)
.

To evaluate this, use the small-perturbation approximation to get ω(p)δω(p) ≈
mδm, and use this in the preceding result to get∣∣ 〈Ψm|Hm′|Ψm〉

∣∣2
〈Ψm|Ψm〉2

≈ πLD

2LD

∑
p

m2(δm)2

ω3(p)
. (62)

Depending on the value of D, the quantity

lim
L→∞

1

LD

∑
p

1

ω3(p)
=

∫
dDp

(2π)D
1

ω3(p)

is either infinite or finite, but even if it’s finite, the extra factor of LD make the
quantity (62) become infinite in the limit L→∞. This is the second result.
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16 Is vacuum energy real?

The name vacuum energy is provocative, the kind of name that science fiction
writers love to recite, but is it real? I’ll offer a few comments:

• If the energy operator (hamiltonian) is defined to be the generator of transla-
tions in time, then only differences between energies matter, because adding
or subtracting a constant term to/from the hamiltonian has no effect in the
equation

A(t) = e−iHtA(0)eiHt.

In particular, the absolute energy of the vacuum state is arbitrary. Equation
(27) exploits this arbitrariness.40

• The Casimir effect is an observable attractive force between neutral con-
ducting surfaces.41 It’s often described using the words vacuum energy, but
that language is based on a computational shortcut, as emphasized in Jaffe
(2005). Bekenstein (2013) uses another shortcut to help quantify what the
usual shortcut ignores. More importantly, though, the models normally used
to derive the effect are models in which only energy differences matter.

• Gravity makes absolute energies observable,42 but exactly how this relates
to vacuum energy in quantum field theory is still partly mysterious. The
cosmological “constant” (which subsumes quantum field theory’s vacuum en-
ergy) is an adjustable parameter in conventional models of quantum gravity,
but those models are either limited to perturbation theory43 or are limited to
a range of cosmological constants that excludes the observed value,44 so we
don’t really understand it yet.

40Equation (27) also forshadows a subject called renormalization: the relationship between a model’s inputs
(like κ) and outputs (testable predictions, or in this case the arbitrary total energy of the vacuum state) can depend
on artificial cutoffs like the granularity ε and size L of the lattice.

41Example: Bressi et al (2002)
42I’m being careless with the word energy here, but being more careful wouldn’t change the basic message.
43Donoghue (1995)
44Banks (1998), Van Raamsdonk (2016)
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17 Energy raising/lowering operators

The operators defined in equations (45) and (46) increase and decrease (respec-
tively) the energy of any state on which they act. The energy-increasing part de-
pends on time through the factor eiω(p)t in the integrand, and the energy-decreasing
part depends on time through the factor e−iω(p)t in the integrand. These are often
described as negative and positive frequency, respectively.45 This section shows that
this correlation between the energy increasing/decreasing property and the nega-
tive/positive frequency property is general, not limited to the free scalar model or
to models with linear equations of motion.

Let A(t) ≡ eiHtA(0)e−iHt be a time-dependent observable in the Heisenberg
picture. Define its positive- and negative-frequency parts by46

A±(t) ≡
∫
ds f±(t− s)A(s)

with

f±(t) ≡
∫ ∞

0

dω

2π
e±iωt−εω

2

, (63)

where ε > 0 is an arbitrarily small regulator. These satisfy

A = A+ + A−.

The positive-frequency part A− acts as an energy-decreasing operator.47 To see
this, choose two states |E〉 and |E ′〉 with sharply defined energies E and E ′. (This
simplifies the calculation, but we could generalize it to almost-sharply defined en-
ergies.) and define

a(t) ≡ 〈E ′|A−(t)|E〉.
45The sign convention in this terminology might seem backward, but it’s common in this context.
46This is well-defined if the operator is bounded and ε > 0 (https://math.stackexchange.com/q/3263689).
47I’m using the superscript to indicate what the operator does to the energy. Referring to the energy-decreasing

part as the positive-frequency part is a standard (but arbitrary) convention.
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This is zero if E ′ > E. To prove this, use iẊ = [X,H] to get

HA−(t) = A−(t)H − iȦ−(t)

=

∫
ds

∫ ∞
0

dω

2π
e−iω(t−s)−εω2

A(s)(H − ω).

Sandwich this between the states |E〉 and |E ′〉 to get

E ′a(t) =

∫
ds

∫ ∞
0

dω

2π
e−iω(t−s)−εω2

(E − ω)〈E ′|A(s)|E〉.

Take the Fourier transform of both sides with respect to t to get

E ′g(ω) = (E − ω)g(ω) (64)

with

g(ω) ≡ θ(ω ≥ 0)

∫
ds eiωs−εω

2〈E ′|A(s)|E〉.

Since ω ≥ 0, this implies g(ω) = 0 if E ′ > E. The quantity a(t) is the Fourier
transform of g(ω), this implies a(t) = 0 if E ′ > E, so A−(t) can only decrease
state’s energy, if it changes the energy at all.
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