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Diffeomorphisms, Tensor Fields,
and General Covariance

Randy S

Abstract Tensor fields live on smooth manifolds. The concept
of a tensor field is independent of any coordinate system: changing
the coordinate system has no effect on the tensor field itself, even
though it changes the way the tensor field is represented in terms
of coordinates. In contrast, given any smooth rearrangement of the
manifold’s points (that is, any diffeomorphism from the manifold to
itself), a corresponding transformation of tensor fields may be de-
fined in a natural way. This article defines that transformation and
calls it a fieldomorphism. Unlike a coordinate transformation, a
fieldomorphism does change the tensor fields. In general relativity,
any fieldomorphism of a solution of the equations of motion gives
another solution of the equations of motion, a property often called
general covariance. In general relativity, two solutions related to
each other by a fieldomorphism are physically equivalent to each
other.
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1 Introduction

Article 09894 introduced the concept of a tensor field on a smooth manifold.
Tensor fields are defined independently of any coordinate system, even though we
typically use a coordinate representation to describe them. Given any diffeo-
morphism from the underlying smooth manifold to itself,1 this article defines a
corresponding transformation of tensor fields. Physicists often call this a diffeomor-
phism, but mathematicians usually reserve that name only for the transformation
of the underlying smooth manifold, so this article uses the name fieldomorphism
for the corresponding transformation of the tensor fields.2 In general relativity, fiel-
domorphisms are symmetries, in the sense that any fieldomorphism of a solution
of the equations of motion gives another solution of the equations of motion.3 This
symmetry is often called general covariance or diffeomorphism invariance in
the physics literature.

One of the main messages in this article is the difference between a fieldomor-
phism (which changes the tensor fields) and a coordinate transformation (which
does not). Understanding the difference between fieldomorphisms and coordinate
transformations is still clarifying even when two solutions related by a fieldomor-
phism are physically equivalent to each other, like they are in general relativity
(section 12).

1Lee (2013), reviewed in article 93875
2This name is not standard, but at least it doesn’t seem to be already in use for anything else: when I searched

for the name fieldomorphism online before posting these articles, Google said “It looks like there aren’t many great
matches for your search.”

3To be a symmetry, the same fieldomorphism must be applied to all of the model’s fields (and other dynamic
entities, if any), including to the metric field.
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2 Diffeomorphisms: one-dimensional example

Loosely speaking, a diffeomorphism (from a smooth manifold to itself) is a smooth
rearrangement of the manifold’s points. Diffeomorphisms preserve the smooth
structure, but typically don’t preserve geometric structure (like distances, angles,
or curvature).

For a simple example, consider the 1-dimensional smooth manifold R, the real
line with its usual smooth structure. The map σ : R→ R defined by

σ(x) = sinh x ≡ ex − e−x

2

is a diffeomorphism from R to itself. The inverse function σ−1 exists because σ(x)
is a monotonically increasing function of x (its derivative is not zero anywhere) and
because its range covers all of R:

σ(x)→ ±∞ as x→ ±∞.
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3 Diffeomorphisms: two-dimensional example

For another example, consider the 2-dimensional smooth manifold R2 equipped
with its usual smooth structure. A point in R2 is represented by a pair (x, y) of
real numbers x and y. We can use x and y as the coordinates of the point. Let
σ denote any smooth function σ from R2 to itself, with a smooth inverse:

(x̃, ỹ) = σ(x, y) (x, y) = σ−1(x̃, ỹ),

Saying that σ is smooth means that x̃ and ỹ are both smooth functions of x, y,
and saying that the inverse σ−1 is smooth means that x and y are both smooth
functions of x̃, ỹ. Such a function can be used in either of two ways:

• as a coordinate transform, which relabels the points of R2, or...

• as a diffeomorphism, which permutes the points of R2.

Example:

x̃ = x cos θ(x, y) + y sin θ(x, y)

ỹ = y cos θ(x, y)− x sin θ(x, y) (1)

and

θ(x, y) ≡ π/2

1 + x2 + y2
.

This map is depicted in figure 1. To see that this map has a smooth inverse, notice
that (1) implies

x̃2 + ỹ2 = x2 + y2 ⇒ θ(x̃, ỹ) = θ(x, y).

Use this to verify the relationships

x = x̃ cos θ(x̃, ỹ)− ỹ sin θ(x̃, ỹ)

y = ỹ cos θ(x̃, ỹ) + x̃ sin θ(x̃, ỹ). (2)
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Figure 1 – The left picture shows some lines of constant x and some lines of constant y. The
right picture shows some lines of constant x̃ and some lines of constant ỹ. The lines of constant
x, y were drawn to be straight with respect to the page’s inherent metric structure, but we could
have drawn the lines of constant x̃, ỹ to be straight instead. On a smooth manifold without a
metric structure, straightness is undefined, so neither coordinate system is more natural than
the other.

This demonstrates that the smooth map (1) has a smooth inverse. Using (x, y) =

(1, 1) in equation (1) gives (x̃, ỹ) =
(√

3+1
2 ,

√
3−1
2

)
. We can use (1) in either of two

ways:

• As a coordinate transform: we can regard the map as giving a new name(√
3+1
2 ,

√
3−1
2

)
to the point that was previously named (1, 1).

• As a diffeomorphism: we can regard the map as moving the point with

coordinates (1, 1) to the new location with coordinates
(√

3+1
2 ,

√
3−1
2

)
.
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4 Notation and basic identities

Let x = (x1, x2, ..., xN) denote the coordinates of a point in the N -dimensional
smooth manifold RN , and let x̃ = (x̃1, x̃2, ..., x̃N) be related to x by a smooth map
with a smooth inverse. The rest of this article uses the abbreviations

∂a ≡
∂

∂xa
∂̃a ≡

∂

∂x̃a
.

In more detail, for any given value of the index a:

• ∂a is the derivative with respect to xa, with xb held fixed for all b 6= a.

• ∂̃a is the derivative with respect to x̃a, with x̃b held fixed for all b 6= a.

The identities4

dx̃a =
(
∂•x̃

a
)
dx• ∂̃a =

(
∂̃ax

•) ∂•
dxa =

(
∂̃•x

a
)
dx̃• ∂a =

(
∂ax̃

•) ∂̃•
dx̃• ∂̃• = dx• ∂•(

∂̃ax
•)(∂•x̃b) = δba =

(
∂ax̃

•)(∂̃•xb)
(with implied sums over the index •) will be used frequently.

4I occasionally use a non-alphanumeric character (like •) for an index because this can help make the pattern stand
out more clearly. This isn’t standard practice, but it’s mild compared to the graphic notation advocated in Penrose
(1971), reviewed later in Penrose (1984), and used extensively in Cvitanović (2011). Similar graphic notations have
also been used in other contexts, including quantum physics: examples include Coecke et al (2021) and Biamonte
and Bergholm (2017).
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5 Fieldomorphisms

A fieldomorphism is neither a coordinate transform (which merely relabels things)
nor a diffeomorphism (which rearranges the points of the smooth manifold). In-
stead, a fieldomorphism rearranges the set of tensor fields of each type, without
rearranging (or relabeling) the points of the smooth manifold.5

Consider any smooth map

σ : RN → RN x̃ = σ(x)

with a smooth inverse. The corresponding fieldomorphism replaces each scalar field
φ with the new scalar field φ̃ defined by

φ̃(x) ≡ φ(x̃). (3)

Intuitively: the fieldomorphism rearranges the relationship between the scalar
field’s values and the underlying smooth manifold’s points – but it does this by
morphing the field instead of by morphing the underlying smooth manifold.

The same fieldomorphism affects vector fields in a natural way. Recall6 that
a vector field is a (special kind of) map from the set of scalar fields to itself. A
given vector field V maps a given scalar field S to the scalar field V (S). The

fieldomorphism replaces V with Ṽ , which is the vector field that maps S̃ to Ṽ (S):

Ṽ (S̃) = Ṽ (S). (4)

In words: the fieldomorphism of V maps the fieldomorphism of S to the fieldo-
morphism of V (S). The quantities S and V (S) are both scalar fields, so their

5Fieldomorphisms are similar to pullbacks and pushforwards (Lee (2013), illustrated by example 8.20 on
pages 183-184), but with a different perspective: pullbacks and pushforwards are used to “transfer” tensor fields
from one smooth manifold to another smooth manifold, given a diffeomorphism from one manifold to the other.
Fieldomorphisms are used to replace the original tensor fields with new tensor fields on the same smooth manifold.

6Article 09894
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fieldomorphisms S̃ and Ṽ (S) are defined by (3). The condition (4) is required to
hold for all scalar fields S, to it defines Ṽ unambiguously. More explicitly, using a
coordinate representation: if7

V (S) = V a(x) ∂aS(x),

then
Ṽ a(x) ∂aS̃(x) = Ṽ (S̃) = Ṽ (S) = V a(x̃) ∂̃aS(x̃).

This holds for all scalar fields S, so it implies

Ṽ a(x) ∂a = V a(x̃) ∂̃a. (5)

Using an identity from section 4, this may also be written

Ṽ a(x) =
(
∂̃•x

a
)
V •(x̃). (6)

Equation (6) describes how the fieldomorphism affects the componentes of a vector
field, just like equation (3) describes how the fieldomorphism affects a scalar field
(which has only one component).

The effect of a fieldomorphism on one-form fields is defined similarly. Recall8

that a one-form field is a (special kind of) map from the set of vector fields to the
set of scalar fields: if ω is a one-form field and V is a vector field, then ω(V ) is a
scalar field. We’ve already defined the effect of the fieldomorphism on scalar and
vector fields, so we can define its effect on one-form fields by requiring

ω̃(Ṽ ) = ω̃(V ) (7)

for all vector fields V . In a coordinate representation,

ω̃(Ṽ ) = ω̃a(x)Ṽ a(x) ω̃(V ) = ωa(x̃)V a(x̃)

7Recall (article 09894) that in a coordinate representation, a vector field is a derivative operator.
8Article 09894
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(the second equation is an application of equation (3)), so equations (6) and (7)
imply

ω̃a(x) ≡
(
∂ax̃

•)ω•(x̃). (8)

after using an identity from section 4. This can also be written

ω̃a(x)dxa ≡ ωa(x̃)dx̃a. (9)

Equation (8) (or (9)) describes how the fieldomorphism affects the components of
a one-form field, just like equation (6) (or (5)) describes how the fieldomorphism
affects the components of a vector field.

The effect of a fieldomorphism on other tensor fields is defined similarly. For
a tensor field with components T ······ (x), the result is that the components of T̃ ······
are T ······ (x̃) contracted with one factor of ∂x/∂x̃ for each upper index and with one
factor of ∂x̃/∂x for each lower index. Example:

T̃ab(x) ≡
(
∂ax̃

•)(∂bx̃×)T•×(x̃), (10)

which can also be written

T̃ab(x) dxa ⊗ dxb ≡ Tab(x̃) dx̃a ⊗ dx̃b. (11)

An important message here is that a fieldomorphism affects only the fields, not the
coordinates and not the points of the underlying manifold.
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6 Fieldomorphisms: one-dimensional examples

For some easy examples, consider this smooth map from the one-dimensional
smooth manifold R to itself:

x̃ = σ(x) = sinh x. (12)

This map has a smooth inverse, because the derivative dx̃/dx is not zero anywhere.
The effect of the corresponding fieldomorphism on various types of tensor field is
illustrated by these examples:9

• For a scalar field φ, the morphed scalar field is given by equation (3):

φ̃(x) = φ(sinhx).

In particular, if the original scalar field is φ(x) = x2, then the transformed
scalar field is φ̃(x) = (sinh x)2.

• For a vector field with component V a(x), the component of the morphed
vector field is given by equation (5):10

Ṽ a(x) =
V a(sinhx)

coshx
.

• For a one-form field with component ωa(x), the component of the morphed
field is given by equation (9):

ω̃a(x) = (cosh x)ωa(sinhx).

• For a metric field with component gab(x), the component of the morphed
metric field is given by equation (11):

g̃ab(x) = (cosh x)2 gab(sinhx).

9To check these results, use the identities listed in section 4.
10The underlying smooth manifold is only one-dimensional, so a vector field has only one component (as does any

other type of tensor field in this case), but it is still not a scalar field! I’m retaining the index as a reminder of this.
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7 Fieldomorphisms: two-dimensional example

For an example with multi-component tensor fields, consider this smooth map from
the two-dimensional smooth manifold R2 to itself (using matrix notation):(

x̃
ỹ

)
=

[
5 7
2 3

](
x
y

)
.

This map has a smooth inverse, namely(
x
y

)
=

[
3 −7
−2 5

](
x̃
ỹ

)
.

The effect of the corresponding fieldomorphism on various types of tensor field is
illustrated by these examples:

• For a scalar field φ, the morphed scalar field is given by equation (3):

φ̃(x, y) = φ(5x+ 7y, 2x+ 3y).

In particular, if the original scalar field is φ(x, y) = x2y, then the transformed
scalar field is φ̃(x, y) = (5x+ 7y)2(2x+ 3y).

• For a vector field with components V a(x), the components of the morphed
vector field are given by equation (6):(

Ṽ x(x, y)

Ṽ y(x, y)

)
=

[
3 −7
−2 5

](
V x(5x+ 7y, 2x+ 3y)
V y(5x+ 7y, 2x+ 3y)

)
.
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8 Fieldomorphisms and the EM gauge field, part 1

As explained in article 98002, when the smooth manifold is topologically trivial,
the tensor Fab describing the electromagnetic (EM) field can also be written in
terms of a gauge field Aa:

Fab(x) = ∂aAb(x)− ∂bAa(x). (13)

The left- and right-hand sides of equation (13) are supposed to be two different
ways of representing the same thing, but are they affected the same way by a
fieldomorphism? In other words, does (13) imply

F̃ab(x) = ∂aÃb(x)− ∂bÃa(x) (14)

for all fieldomorphisms?
Remember that a fieldomorphism does not affect the coordinates, which is why

equations (13) and (14) both involve ∂ instead of ∂̃ on the right-hand side. Even
so, equation (13) actually does imply equation (14). This might not be obvious,
and it wouldn’t be true if the minus-sign on the right-hand side were changed to a
plus-sign! The minus-sign is essential if both Fab and Aa are to qualify as tensor
fields, as assumed by the definition of fieldomorphism. The next section shows that
(13) implies (14), highlighting the essential role of the minus sign.
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9 Fieldomorphisms and the EM gauge field, part 2

To see that (13) implies (14), start with

F̃ab(x) ≡
(
∂ax̃

•)(∂bx̃×)F•×(x̃) Ãa(x) ≡
(
∂ax̃

•)A•(x̃), (15)

which describe how a fieldomorphism affects the tensor fields F and A. Equation
(13) says11

F•×(x̃) = ∂̃•A×(x̃)− ∂̃×A•(x̃).

Combine this with the first of equations (15) to get

F̃ab(x) =
(
∂ax̃

•)(∂bx̃×)(∂̃•A×(x̃)− ∂̃×A•(x̃)
)

=
(
∂bx̃

×)∂aA×(x̃)−
(
∂ax̃

•)∂bA•(x̃), (16)

after using an identity from section 4 to relate ∂̃ to ∂. This is the left-hand side of
(14). For the right-hand side, the second of equations (15) implies

∂aÃb(x)− ∂bÃa(x) = ∂a

((
∂bx̃

•)A•(x̃)
)
− ∂b

((
∂ax̃

•)A•(x̃)
)

=
(
∂bx̃

•)∂aA•(x̃)−
(
∂ax̃

•)∂bA•(x̃)

+ (∂a∂bx̃
• − ∂b∂ax̃•)A•(x̃).

Thanks to the minus sign, the last line is zero because partial derivatives with re-
spect to independent variables commute with each other, and the remainder is equal
to (16). This completes the proof that (13) implies (14), for all fieldomorphisms.

11The derivatives here are ∂̃ because this is dictated by the argument x̃ on the left-hand side. This isn’t a
fieldomorphism or a coordinate transform. It’s just a matter of using x̃ as the argument of F•×(· · · ) according to
equation (13).
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10 Fieldomorphisms as symmetries: concept

General relativity has a remarkable property called general covariance: given
any solution of the equations of motion, applying any fieldomorphism to all of the
fields (and particle-worldlines, if any) gives another solution to the same equations
of motion. This is a huge symmetry, and most models don’t have it. Every model
has the property that its equations (and their solutions) can be expressed in any co-
ordinate system, but that’s trivial, because changing the coordinate system merely
relabels things. In contrast, general covariance is not a trivial property at all.

To make the math easier, the next section considers a model – namely Maxwell’s
equations in flat spacetime – that is symmetric under some fieldomorphisms, namely
those that leave the metric field unchanged.12 Fieldomorphisms that don’t change
the metric field are called isometries.13 When the metric field is the Minkowski
metric, as it will be in this example, isometries are called Poincaré transforms.
This includes Lorentz transforms, which are the focus of the example in the next
section. A model that is symmetric under these fieldomorphisms is said to have
Lorentz symmetry. This is a much smaller symmetry than general covariance,
but it still has important applications and still illustrates some important concepts.

Article 49705 illustrated the concept of Lorentz symmetry in models with only
scalar fields. The following example uses electrodynamics instead. This makes
things more interesting, because it illustrates the importance of the factors ∂x/∂x̃
and ∂x̃/∂x that a fieldomorphism applies to the components of non-scalar fields.

12Maxwell’s equations can be generalized to be symmetric under all fieldomorphisms by replacing partial derivatives
with covariant derivatives and promoting the metric field to a dynamic field subject to the equation of motion
Rabc

d = 0, where Rabc
d is the Riemann curvature tensor (article 03519). That model doesn’t satisfy the action

principle (because the EM field still doesn’t influence the metric field), but it is does have full general covariance.
13An isometry can also be defined as a diffeomorphism for which the pullback of the metric field is the same as

the original metric field.
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11 Fieldomorphisms as symmetries: example

Consider Maxwell’s equations for the electromagnetic (EM) field in flat spacetime.
The EM field is a tensor field with components Fab. In flat spacetime with the
Minkowski metric, Maxwell’s equations are (article 31738)

∂aF
ab(x) = 0 ∂[aFbc](x) = 0 (17)

where indices are raised/lowered using the Minkowski metric (with components
ηab) and its inverse (with components ηab). Square brackets around the subscripts
denote complete antisymmetrization.

A Lorentz transform is a fieldomorphism for which the quantities ∂x̃a/∂xb satisfy

∂a
(
∂bx̃

c
)

= 0 (18)(
∂•x̃

a
)(
∂×x̃

b
)
η•× = ηab (19)

with implied sums over the indices • and ×. The goal is to demonstrate that
such fieldomorphisms are symmetries of Maxwell’s equations (17): if F satisfies
equations (17), then F̃ does, too.

As explained in section 5, the components of F̃ are related to those of F by

F̃ab(x) ≡
(
∂ax̃

•)(∂bx̃×)F•×(x̃) (20)

F̃ ab(x) ≡
(
∂̃•x

a
)(
∂̃×x

b
)
F •×(x̃). (21)

The goal is to show that the quantities

∂aF̃
ab(x) ∂[aF̃bc](x) (22)

are both zero if F satisfies (17). Use (18) and (20)-(21) to get

∂aF̃
ab(x) =

(
∂̃•x

a
)(
∂̃×x

b
)
∂aF

•×(x̃) ∂[aF̃bc](x) =
(
∂[bx̃

•)(∂cx̃×)∂a]F•×(x̃).
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The condition (18) was used to pull the factors ∂x/∂x̃ and ∂x̃/∂x out from under
the derivative ∂a. Use an identity from section 4 to express ∂a in terms of ∂̃a, which
gives

∂aF̃
ab(x) =

(
∂ax̃

◦)(∂̃•xa)(∂̃×xb)∂̃◦F •×(x̃)

=
(
∂̃×x

b
)[
∂̃aF

a×(x̃)
]

(23)

∂[aF̃bc](x) =
(
∂ax̃

◦)(∂bx̃•)(∂cx̃×)[∂̃[◦F•×](x̃)
]
. (24)

In equation (23), the factors involving the index a canceled thanks to another
identity from section 4. The quantities in square brackets are just ∂aF

ab and
∂[aFbc] with the coordinates/indices re-labeled, so they are zero if F satisfies (17).

Altogether, this confirms that if F satisfies (17), then so does F̃ , whenever the
fieldomorphism is a Lorentz transform.

Notice how the derivation used the conditions (18) and (19):

• The condition (18) was used explicitly to pull the factors ∂x/∂x̃ and ∂x̃/∂x
out from under the derivative ∂a. Fieldomorphisms that don’t satisfy (18)
are not symmetries of the pair of equations (17), but all fieldomorphisms are
symmetries of the equation ∂[aFbc] = 0 by itself. The antisymmetrization is
essential for this, as it was in section 9.

• We used the condition (19) implicitly when we declared that indices are
raised/lowered with the Minkowski metric. For any metric field g whatso-
ever, we always have the relationship F ab = ga•gb×F•×. With this relation-
ship, equation (20) implies equation (21), as long as the same fieldomorphism
is applied to the metric, too. Most fieldomorphisms change the metric field,
though, so if we want equations (20)-(21) to be consistent with using the
Minkowski metric to raise/lower indices, then we need to limit the fieldomor-
phisms to those that satisfy the condition (19).
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12 General covariance and observables

The previous section illustrated the idea of fieldomorphism symmetry, using a
model for which some fieldomorphisms are symmetries. In general relativity, all
fieldomorphisms are symmetries – a property called general covariance. This sec-
tion illustrates the interpretation of fieldomorphisms as unobservable symmetries
in general relativity, meaning that two solutions that are related to each other by
the fieldomorphism are considered to be physically equivalent to each other. In
a model like general relativity, observables must be invariant under all fieldomor-
phisms. Examples:

• Consider a model whose dynamic entities include a scalar field. The question
“what is the field’s maximum value?” is an observable, but the question “at
what point in spacetime does the maximum value occur?” is not.

• For a model that includes two scalar fields, the question “do the two fields
attain their maximum values at the same point or at different points?” is
an observable, but the question “at what points do the fields attain their
maximum values?” is not.

• For a model with a scalar field and a metric field, the question “what are the
values of the scalar field at points where the metric field’s curvature is zero?”is
an observable, but the question “at what points of the smooth manifold does
the metric field have zero curvature?” is not.

Roughly speaking, in a model like general relativity, observables are relationships
between dynamic entities. Fieldomorphisms preserve those relationships, because
all of the fields are “morphed” together. If the model has pointlike particles, then
the corresponding symmetries “morph” the particles’ worldlines together with the
fields (including the metric field), and then the question “is the particle’s worldline
a geodesic?” is an observable. This is related to Mach’s principle.
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